857 resultados para Central Valley Project (Calif.)
Resumo:
"Supplements the Bureau of Reclamation report which was printed as H. D. 693, 76th Congress, 3rd session, under the title of: Reservoirs on the San Luis Valley Project in Colorado [1940]"
Resumo:
Reproduced from typewritten copy.
Resumo:
Description based on: 1981.
Resumo:
Mode of access: Internet.
Resumo:
This project has delivered outcomes that address major agronomic and crop protection issues closely linked to the profitability and sustainability of cotton production enterprises in CQ. From an agronomic perspective, the CQ environment was always though to support economically viable cotton production in a wide sowing window from the middle of September to early January prior to this research. The ideal positioning of Bollgard II varieties in the CQ planting window was, therefore, critical to the future of the local cotton industry because growers needed baseline information to determine how best to take advantage of the higher yield potential offered by the Bt cotton technology, optimise irrigation water use and fibre characteristics. The project’s outputs include a number of key agronomic findings. Over three growing seasons, Bollgard II crop planted in the traditional sowing window from the middle of September to the end of October consistently produced the highest yields. The project delivers a clear and quantitative assessment of the impacts of planting outside the traditional cropping window - a yield penalty of between 1-4 bales/ha for November and December planted cotton. Whilst yield penalties associated with December-planted crops are clearly linked to declining heat units in the second half of the crop and a cool finish, those associated with November-planted cotton are not consistent with the theoretical yield potential for this sowing date. Further research to understand and minimize the physiological constraints on November-planted cotton would give CQ cotton growers far greater flexibility to develop mixed/double/rotation cropping farming systems that are relevant to the rapidly evolving nature of Agricultural production in Australia. The equivalence of cultivar types with clearly distinguishable, genetically based growth habits, demonstrated in this project, gives growers important information for making varietal choices. The entomological outcomes of this project represent strategic and tactical tools that are highly relevant to the viability and profitability of the cotton industry in Australia. The future of the cotton industry is inextricably linked to the survival and efficacy of GM cotton. Research done in the Callide irrigation area demonstrates the unquestionable potential for development of alternative and highly effective resistance management strategies for Bollgard II using novel technologies and strategies based on products such as Magnet®. Magnet® and similar technologies will be increasingly important in strategies to preserve the shelf life and efficacy of current and future generations of GM technology. However, more research will be required to address logistical and operational issues related to these new technologies before they can be fully exploited in commercial production systems. From an economic perspective, SLW is the sleeping giant in terms of insect nemeses of cotton, particularly from the standpoint of climate change and an increasingly warmer production environment. An effective sampling and management strategy for SLW which has been delivered by this project will go a long way towards minimising production costs in an environment characterised by rapidly rising input costs. SLW has the potential to permanently debilitate the national cotton industry by influencing market sentiment and quality perceptions. Field validation of the SLW population sampling models and management options in the Dawson irrigation area cotton and southern Queensland during 2006-07 documents the robustness of the entomological research outcomes achieved through this project.
Resumo:
Developing best practices in Central Queensland to (a) manage difficult to control weeds; (b) improve herbicide efficacy under adverse conditions, and (c) manage weeds in wide-row crop systems.
Resumo:
Control measures for an unidentified disorder in sunflower crops in Central Queensland.
Resumo:
Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).
Resumo:
High-resolution reconstructions of climate variability that cover the past millennia are necessary to improve the understanding of natural and anthropogenic climate change across the globe. Although numerous records are available for the mid- and high-latitudes of the Northern Hemisphere, global assessments are still compromised by the scarcity of data from the Southern Hemisphere. This is particularly the case for the tropical and subtropical areas. In addition, high elevation sites in the South American Andes may provide insight into the vertical structure of climate change in the mid-troposphere. This study presents a 3000 yr-long austral summer (November to February) temperature reconstruction derived from the 210Pb- and 14C-dated organic sediments of Laguna Chepical (32°16' S, 70°30' W, 3050 m a.s.l.), a high-elevation glacial lake in the subtropical Andes of central Chile. Scanning reflectance spectroscopy in the visible light range provided the spectral index R570/R630, which reflects the clay mineral content in lake sediments. For the calibration period (AD 1901–2006), the R570/R630 data were regressed against monthly meteorological reanalysis data, showing that this proxy was strongly and significantly correlated with mean summer (NDJF) temperatures (R3 yr = −0.63, padj = 0.01). This calibration model was used to make a quantitative temperature reconstruction back to 1000 BC. The reconstruction (with a model error RMSEPboot of 0.33 °C) shows that the warmest decades of the past 3000 yr occurred during the calibration period. The 19th century (end of the Little Ice Age (LIA)) was cool. The prominent warmth reconstructed for the 18th century, which was also observed in other records from this area, seems systematic for subtropical and southern South America but remains difficult to explain. Except for this warm period, the LIA was generally characterized by cool summers. Back to AD 1400, the results from this study compare remarkably well to low altitude records from the Chilean Central Valley and southern South America. However, the reconstruction from Laguna Chepical does not show a warm Medieval Climate Anomaly during the 12–13th century, which is consistent with records from tropical South America. The Chepical record also indicates substantial cooling prior to 800 BC. This coincides with well-known regional as well as global glacier advances which have been attributed to a grand solar minimum. This study thus provides insight into the climatic drivers and temperature patterns in a region for which currently very few data are available. It also shows that since ca. AD 1400, long-term temperature patterns were generally similar at low and high altitudes in central Chile.
Resumo:
"This report was prepared through a cooperative effort of the Santa Monica Mountains Area Recreation Trails Coordination Project [and] ... facilitated by the Rivers, Trails and Conservation Assistance Program ..."--Verso t.p.
Resumo:
ResumenEstudia las características del uso del suelo a fines del siglo XIX e inicios del XX en la provincia de Alajuela, Costa Rica, con énfasis en el noreste del Valle Central. Señala diferencias subregionales y entre tipos de unidades productivas.AbstractStudies the characteristics of land use toward the turn of the century in the province of Alajuela, Costa Rica, and especially in the northwestern part of Central Valley. Subregional differences are identified, as well as diffrences among varios types of productive units.
Resumo:
ResumenUn extenso ciclo de crecimiento económico caracterizó al Valle Central de Costa Rica durante el período colonial tardío. Sin embargo, el efecto de dicho crecimiento sobre las estructuras socio-económicas no fue homogéneo, y es posible observar notables diferencias en las secciones oriental y occidental de dicho valle. En la primera, las adversas condiciones que enfrentaba el productor directo le impidieron beneficiarse de la expansión mercantil como lo hicieron los productores radicados del lado occidental.AbstractCosta Rica´s Central Valley underwent a major economic growth cycle during the late Colonial period. However, the effect of this growth on socio-economic structures was not homogeneous, and there were noticeable discrepancies between the eastern and western sections of that Valley. In the former, adverse conditions faced be direct producers did not allow them to benefit from mercantile expansion, as did those living in the western section.