997 resultados para Cementitious composites


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research was motivated by the requirement of asbestos s replacement in building systems and the need to generate jobs and income in the country side of the state of Bahia, Brazil. The project aimed at using fibers from licuri leaves (syagrus coronata), an abundant palm in the region, to produce composites appropriate for the sustainable production of cement fibre reinforced products in small plants. The composites were produced in laboratory using Portland cement CP-II-F32, sand, water, licuri palm fiber contents of 1.0, 1.5 and 2.0% by weight of binder (two different fiber length) and metakaolin. The latter was chosen as an additional binder for its efficiency to reduce the alkalinity of cementitious matrixes therefore preventing the degradation of vegetable fibers. The characterization of the composite components was carried out by sieving and laser particle size analyses, thermal analysis, fluorescence and X-ray diffraction. The composites performance was evaluated by 3- point-bending tests, compressive strength, ultrasound module of elasticity, free and restrained shrinkage, water capillarity absorption and apparent specific gravity. It has been found that the addition of fibers increased the time to onset of cracking over 200.00% and a 25% reduction in cracks opening in the restrained shrinkage test. The capillary absorption reduced about 25% when compared to fiber-free composites. It was also observed with regard to flexural strength, compressive strength and specific gravity, that the addiction of fibers did not affect the composite performance presenting similar results for compounds with and without fibers. In general it can be stated that the reinforced composite fibers of palm licuri presents physical and mechanical characteristics which enable them to be used in the intended proposals of this research

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is an invited contribution in a special issue of the Journal of Cement and Concrete Composites

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present work was to evaluate the effects of 14 years of weathering exposition on the microstructure and mineral composition of cementitious roofing tiles, still in service, reinforced with fique fibres (Furcrae gender). The results show that tiles under weathering exposition presented higher water absorption and apparent void volume than tiles under laboratory exposition. The continuous hydration of cement and natural carbonation filled the smaller pores but contrarily the large pores remained in the porous fibre to matrix interface in the samples exposed to weathering. On the other hand, their microstructure presented lower air permeability than samples aged in the internal environment of the laboratory. Besides, in the weathering aged tiles takes place a more intensive hydration process as it was identified greater amount of hydrated phases than in the laboratory aged specimens. The present results contribute to understanding the consequences of tropical weathering on the fibre-cement degradation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work evaluated the effects of accelerated carbonation on mechanical and physical characteristics of cementitious roofing tiles reinforced with vegetable fibre. The maximum load and toughness of the tiles have increased approximately 25% and 80% respectively as a consequence of the accelerated carbonation. Water absorption and apparent porosity decreased with carbonation while bulk density increased as a clear indication of the densification of the composite. The improvement on the mechanical performance suggests that the fibres retained their tensile strength in the inorganic matrix. Results of specimens extracted from the tested tiles after approximately 480 days in laboratory environment and further aged indicate that soak and dry cycles promoted some leaching of hydration products and more voids and lower density when performed before carbonation. The results indicate the utilization of accelerated carbonation as an effective procedure to mitigate the degradation suffered by the cellulose fibres in the less aggressive medium. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extensive study was made of the physical properties of a range of cementitiously stabilised materials to determine their suitability for use in in situ pavement construction. This process for recycling existing pavements has considerable environmental and cost benefits. Pavement models incorporating these materials were analysed to determine their structural behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing use of Fiber Reinforced methods for strengthening existing brick masonry walls and columns, especially for the rehabilitation of historical buildings, has generated considerable research interest in understanding the failure mechanism in such systems. This dissertation is aimed to provide a basic understanding of the behavior of solid brick masonry walls unwrapped and wrapped with Fiber Reinforced Cementitious Matrix Composites. This is a new type of composite material, commonly known as FRCM, featuring a cementitious inorganic matrix (binder) instead of the more common epoxy one. The influence of the FRCM-reinforcement on the load-carrying capacity and strain distribution during compression test will be investigated using a full-field optical technique known as Digital Image Correlation. Compression test were carried on 6 clay bricks columns and on 7 clay brick walls in three different configuration, casted using bricks scaled respect the first one with a ratio 1:2, in order to determinate the effects of FRCM reinforcement. The goal of the experimental program is to understand how the behavior of brick masonry will be improved by the FRCM-wrapping. The results indicate that there is an arching action zone represented in the form of a parabola with a varying shape according to the used configuration. The area under the parabolas is considered as ineffectively confined. The effectively confined area is assumed to occur within the region where the arching action had been fully developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Widespread use of glass fibre reinforced cement (GRC) has been impeded by concerns over its durability. Three degradation mechanisms are proposed - fibre corrosion, Ca(OHh precipitation and matrix densification - although their relative importance is debated. Matrices with reduced alkalinities and Ca(OH)2 contents are being developed; the aim of this study was to investigate their hydration and interaction with alkali-resistant fibres to determine the factors controlling their long-term durability, and assess the relevancy of accelerated ageing. The matrices studied were: OPC/calcium-sulphoaluminate cement plus metakaolin (C); OPC plus metakaolin (M); blast-furnace slag cement plus a micro-silica based additive (D); and OPC (O). Accelerated ageing included hot water and cyclic regimes prior to tensile testing. Investigations included pore solution expression, XRD, DTA/TG, SEM and optical petrography. Bond strength was determined from crack spacings using microstructural parameters obtained from a unique image analysis technique. It was found that, for the new matrices - pore solution alkalinities were lower; Ca(OH)2 was absent or quickly consumed; different hydrates were formed at higher immersion temperatures; degradation under 65°C immersion was an order of magnitude slower, and no interfilamental Ca(OH)2 was observed .It was concluded that: fibre weakening caused by flaw growth was the primary degradation mechanism and was successfully modelled on stress corrosion/static fatigue principles. OPC inferiority was attributed partly to its higher alkalinity but chiefly to the growth of Ca(OH)2 aggravating the degradation; and hot water ageing although useful in model formulation and contrasting the matrices, changed the intrinsic nature of the composites rather than simply accelerating the degradation mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report reviews the selection, design, and installation of fiber reinforced polymer systems for strengthening of reinforced concrete or pre-stressed concrete bridges and other structures. The report is prepared based on the knowledge gained from worldwide experimental research, analytical work, and field applications of FRP systems used to strengthen concrete structures. Information on material properties, design and installation methods of FRP systems used as external reinforcement are presented. This information can be used to select an FRP system for increasing the strength and stiffness of reinforced concrete beams or the ductility of columns, and other applications. Based on the available research, the design considerations and concepts are covered in this report. In the next stage of the project, these will be further developed as design tools. It is important to note, however, that the design concepts proposed in literature have not in many cases been thoroughly developed and proven. Therefore, a considerable amount of research work will be required prior to development of the design concepts into practical design tools, which is a major goal of the current research project. The durability and long-term performance of FRP materials has been the subject of much research, which still are on going. Long-term field data are not currently available, and it is still difficult to accurately predict the life of FRP strengthening systems. The report briefly addresses environmental degradation and long-term durability issues as well. A general overview of using FRP bars as primary reinforcement of concrete structures is presented in Chapter 8. In Chapter 9, a summary of strengthening techniques identified as part of this initial stage of the research project and the issues which require careful consideration prior to practical implementation of these identified techniques are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A worldwide interest is being generated in the use of fibre reinforced polymer composites (FRP) in rehabilitation of reinforced concrete structures. As a replacement for the traditional steel plates or external post-tensioning in strengthening applications, various types of FRP plates, with their high strength to weight ratio and good resistance to corrosion, represent a class of ideal material in external retrofitting. Within the last ten years, many design guidelines have been published to provide guidance for the selection, design and installation of FRP systems for external strengthening of concrete structures. Use of these guidelines requires understanding of a number of issues pertaining to different properties and structural failure modes specific to these materials. A research initiative funded by the CRC for Construction Innovation was undertaken (primarily at RMIT) to develop a decision support tool and a user friendly guide for use of fibre reinforced polymer composites in rehabilitation of concrete structures. The user guidelines presented in this report were developed after industry consultation and a comprehensive review of the state of the art technology. The scope of the guide was mainly developed based on outcomes of two workshops with Queensland Department of Main Roads (QDMR). The document covers material properties, recommended construction requirements, design philosophy, flexural, shear and torsional strengthening of beams and strengthening of columns. In developing this document, the guidelines published on FIB Bulletin 14 (2002), Task group 9.3, International Federation of Structural Concrete (FIB) and American Concrete Institute Committee 440 report (2002) were consulted in conjunction with provisions of the Austroads Bridge design code (1992) and Australian Concrete Structures code AS3600 (2002). In conclusion, the user guide presents design examples covering typical strengthening scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents a summary of the research conducted by the research team of the CRC project 2002-005-C, “Decision support tools for concrete infrastructure rehabilitation”. The project scope, objectives, significance and innovation and the research methodology is outlined in the introduction, which is followed by five chapters covering different aspects of the research completed. Major findings of a review of literature conducted covering both use of fibre reinforced polymer composites in rehabilitation of concrete bridge structures and decision support frameworks in civil infrastructure asset management is presented in chapter two. Case study of development of a strengthening scheme for the “Tenthill Creek bridge” is covered in the third chapter, which summarises the capacity assessment, traditional strengthening solution and the innovative solution using FRP composites. The fourth chapter presents the methodology for development of a user guide covering selection of materials, design and application of FRP in strengthening of concrete structures, which were demonstrated using design examples. Fifth chapter presents the methodology developed for evaluating whole of life cycle costing of treatment options for concrete bridge structures. The decision support software tool developed to compare different treatment options based on reliability based whole of life cycle costing will be briefly described in this chapter as well. The report concludes with a summary of findings and recommendations for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares and reviews the recommendations and contents of the guide for the design and construction of externally bonded FRP systems for strengthening concrete structures reported by ACI committee 440 and technical report of Externally bonded FRP reinforcement for RC structures (FIB 14) in application of carbon fiber reinforced polymer (CFRP) composites in strengthening of an aging reinforced concrete headstock. The paper also discusses the background, limitations, strengthening for flexure and shear, and other related issues in use of FRP for strengthening of a typical reinforced concrete headstock structure such as durability, de-bonding, strengthening limits, fire and environmental conditions. A case study of strengthening of a bridge headstock using FRP composites is presented as a worked example in order to illustrate and compare the differences between these two design guidelines when used in conjunction with the philosophy of the Austroads (1992) bridge design code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fracture behavior of Cu-Ni laminate composites has been investigated by tensile testing. It was found that as the individual layer thickness decreases from 100 to 20nm, the resultant fracture angle of the Cu-Ni laminate changes from 72 degrees to 50 degrees. Cross-sectional observations reveal that the fracture of the Ni layers transforms from opening to shear mode as the layer thickness decreases while that of the Cu layers keeps shear mode. Competition mechanisms were proposed to understand the variation in fracture mode of the metallic laminate composites associated with length scale.