902 resultados para Cellular defense


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heat shock proteins play a key regulatory role in cellular defense. To investigate the role of the inducible 70-kDa heat shock protein (HSP70) in skeletal muscle atrophy and subsequent recovery, soleus (SOL) and extensor digitorum longus (EDL) muscles from overexpressing HSP70 transgenic mice were immobilized for 7 days and subsequently released from immobilization and evaluated after 7 days. Histological analysis showed that there was a decrease in cross-sectional area of type II myofiber from EDL and types I and II myofiber from SOL muscles at 7-day immobilization in both wild-type and HSP70 mice. At 7-day recovery, EDL and SOL myofibers from HSP70 mice, but not from wild-type mice, recovered their size. Muscle tetanic contraction decreased only in SOL muscles from wild-type mice at both 7-day immobilization and 7-day recovery; however, it was unaltered in the respective groups from HSP70 mice. Although no effect in a fatigue protocol was observed among groups, we noticed a better contractile performance of EDL muscles from overexpressing HSP70 groups as compared to their matched wild-type groups. The number of NCAM positive-satellite cells reduced after immobilization and recovery in both EDL and SOL muscles from wild-type mice, but it was unchanged in the muscles from HSP70 mice. These results suggest that HSP70 improves structural and functional recovery of skeletal muscle after disuse atrophy, and this effect might be associated with preservation of satellite cell amount.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Peroxiredoxins have diverse functions in cellular defense-signaling pathways. 2-Cys-peroxiredoxins (2-Cys-Prx) reduce H2O2 and alkyl-hydroperoxide. This study describes the purification and characterization of a genuine 2-Cys-Prx from Vigna unguiculata (Vu-2-Cys-Prx). Methods: Vu-2-Cys-Prx was purified from leaves by ammonium sulfate fractionation, chitin affinity and ion exchange chromatography. Results: Vu-2-Cys-Prx reduces H2O2 using NADPH and DTT. Vu-2-Cys-Prx is a 44 kDa (SDS-PAGE)/46 kDa (exclusion chromatography) protein that appears as a 22 kDa molecule under reducing conditions, indicating that it is a homodimer linked intermolecularly by disulfide bonds and has a pI range of 4.56-4.72; its NH2-terminal sequence was similar to 2-Cys-Prx from Phaseolus vulgaris (96%) and Populus tricocarpa (96%). Analysis by ESI-Q-TOF MS/MS showed a molecular mass/pI of 28.622 kDa/5.18. Vu-2-Cys-Prx has 8% alpha-helix, 39% beta-sheet, 22% of turns and 31% of unordered forms. Vu-2-Cys-Prx was heat stable, has optimal activity at pH 7.0, and prevented plasmid DNA degradation. Atomic force microscopy shows that Vu-2-Cys-Prx oligomerized in decamers which might be associated with its molecular chaperone activity that prevented denaturation of insulin and citrate synthase. Its cDNA analysis showed that the redox-active Cys(52) residue and the amino acids Pro(45), Thr(49) and Arg(128) are conserved as in other 2-Cys-Prx. General significance: The biochemical and molecular features of Vu-2-Cys-Prx are similar to other members of 2-Cys-Prx family. To date, only one publication reported on the purification of native 2-Cys-Prx from leaves and the subsequent analysis by N-terminal Edman sequencing, which is crucial for construction of stromal recombinant 2-Cys-Prx proteins. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Reactive oxygen species (ROS) are formed under natural physiological conditions and are thought to play an important role in many human diseases. A wide range of antioxidants are involved in cellular defense mechanisms against ROS, which can be generated in excess during stressful conditions, these include enzymes and non-enzymatic antioxidants. The aim of this study was to evaluate the antioxidant responses of mice to two diets control, commercial and the purified AIN 93 diet, commonly used in experiments with rodents. Results: Malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations and superoxide dismutase (SOD) and glutathione reductase (GR) activities determined in the liver were lower in the group of mice fed with the AIN 93 diet, while catalase (CAT) activity was higher in the same group, when compared to the group fed on the commercial diet. Liver glutathione peroxidase (GSH-Px) activity was similar in the groups fed on either AIN 93 or the commercial diets. Two SOD isoforms, Mn-SODII and a Cu/Zn-SODV, were specifically reduced in the liver of the AIN 93 diet fed animals. Conclusions: The clear differences in antioxidant responses observed in the livers of mice fed on the two diets suggest that the macro- and micro-nutrient components with antioxidant properties, including vitamin E, can promote changes in the activity of enzymes involved in the removal of the ROS generated by cell metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resistance of cancer cells towards chemotherapy is the major cause of therapy failure. Hence, the evaluation of cellular defense mechanisms is essential in the establishment of new chemotherapeutics. In this study, classical intrinsic and acquired as well as new resistance mechanisms relevant in the cellular response to the novel vacuolar H+-ATPase inhibitor archazolid B were investigated. Archazolid B, originally produced by the myxobacterium Archangium gephyra, displayed cytotoxicity in the low nanomolar range on a panel of cancer cell lines. The drug showed enhanced cytotoxic activity against nearly all cancerous cells compared to their non-cancerous pendants. With regards to ABC transporters, archazolid B was identified as a moderate substrate of ABCB1 (P-glycoprotein) and a weak substrate of ABCG2 (BCRP), whereas hypersensitivity was observed in ABCB5-expressing cells. The cytotoxic effect of archazolid B was shown to be independent of the cellular p53 status. However, cells expressing constitutively active EGFR displayed significantly increased resistance. Acquired drug resistance was studied by establishing an archazolid B-resistant MCF-7 cell line. Experiments showed that this secondary resistance was not conferred by aberrant expression or DNA mutations of the gene encoding vacuolar H+-ATPase subunit c, the direct target of archazolid B. Instead, a slight increase of ABCB1 and a significant overexpression of EGFR as well as reduced proliferation may contribute to acquired archazolid B resistance. For identification of new resistance strategies upon archazolid B treatment, omics data from bladder cancer and glioblastoma cells were analyzed, revealing drastic disturbances in cholesterol homeostasis, affecting cholesterol biosynthesis, uptake and transport. As shown by filipin staining, archazolid B led to accumulation of free cholesterol in lysosomes, which triggered sterol responses, mediated by SREBP-2 and LXR, including up-regulation of HMGCR, the key enzyme of cholesterol biosynthesis. Furthermore, inhibition of LDL uptake as well as impaired LDLR surface expression were observed, indicating newly synthesized cholesterol to be the main source of cholesterol in archazolid B-treated cells. This was proven by the fact that under archazolid B treatment, total free cholesterol levels as well as cell survival were significantly reduced by inhibiting HMGCR with fluvastatin. The combination of archazolid B with statins may therefore be an attractive strategy to circumvent cholesterol-mediated cell survival and in turn potentiate the promising anticancer effects of archazolid B.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Free radicals play an important role in many physiological processes that occur in the human body such as cellular defense responses to infectious agents and a variety of cellular signaling pathways. While at low concentrations free radicals are involved in many significant metabolic reactions, high levels of free radicals can have deleterious effects on biomolecules like proteins, lipids, and DNA. Many physiological disorders such as diabetes, ageing, neurodegenerative diseases, and ischemia-reperfusion (I/R) injury are associated with oxidative stress.1 In particular, the deleterious effects caused by I/R injury developed during organ transplantation, cardiac infarct, and stroke have become the main cause of death in the United States and Europe.1,2 In this context, we synthesized and characterized a series of novel indole-amino acid conjugates as potential antioxidants for I/R injury. The synthesis of indole-phenol conjugate compounds is also discussed. Phenolic derivatives such as caffeic acid, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), resveratrol, and its analogues are known for their significant antioxidative properties. A series of resveratrol analogues have been designed and synthesized as potential antioxidants. The radical scavenging mechanisms for potential antioxidants and assays for the in vitro evaluation of antioxidant activities are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ocean quahog, Arctica islandica is the longest-lived non-colonial animal known to science. A maximum individual age of this bivalve of 405 years has been found in a population off the north western coast of Iceland. Conspicuously shorter maximum lifespan potentials (MLSPs) were recorded from other populations of A. islandica in European waters (e.g. Kiel Bay: 30 years, German Bight: 150 years) which experience wider temperature and salinity fluctuations than the clams from Iceland. The aim of my thesis was to identify possible life-prolonging physiological strategies in A. islandica and to examine the modulating effects of extrinsic factors (e.g. seawater temperature, food availability) and intrinsic factors (e.g. species-specific behavior) on these strategies. Burrowing behavior and metabolic rate depression (MRD), tissue-specific antioxidant and anaerobic capacities as well as cell-turnover (= apoptosis and proliferation) rates were investigated in A. islandica from Iceland and the German Bight. An inter-species comparison of the quahog with the epibenthic scallop Aequipecten opercularis (MLSP = 8-10 years) was carried out in order to determine whether bivalves with short lifespans and different lifestyles also feature a different pattern in cellular maintenance and repair. The combined effects of a low-metabolic lifestyle, low oxidative damage accumulation, and constant investment into cellular protection and tissue maintenance, appear to slow-down the process of physiological aging in A. islandica and to afford the extraordinarily long MLSP in this species. Standard metabolic rates were lower in A. islandica when compared to the shorter-lived A. opercularis. Furthermore, A. islandica regulate mantle cavity water PO2 to mean values < 5 kPa, a PO2 at which the formation of reactive oxygen species (ROS) in isolated gill tissues of the clams was found to be 10 times lower than at normoxic conditions (21 kPa). Burrowing and metabolic rate depression (MRD) in Icelandic specimens were more pronounced in winter, possibly supported by low seawater temperature and food availability, and seem to be key energy-saving and life-prolonging parameters in A. islandica. The signaling molecule nitric oxide (NO) may play an important role during the onset of MRD in the ocean quahog by directly inhibiting cytochome-c-oxidase at low internal oxygenation upon shell closure. In laboratory experiments, respiration of isolated A. islandica gills was completely inhibited by chemically produced NO at low experimental PO2 <= 10 kPa. During shell closure, mantle cavity water PO2 decreased to 0 kPa for longer than 24 h, a state in which ROS production is supposed to subside. Compared to other mollusk species, onset of anaerobic metabolism is late in A. islandica in the metabolically reduced state. Increased accumulation of the anaerobic metabolite succinate was initially detected in the adductor muscle of the clams after 3.5 days under anoxic incubation or in burrowed specimens. A ROS-burst was absent in isolated gill tissue of the clams following hypoxia (5 kPa)-reoxygenation (21 kPa). Accordingly, neither the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), nor the specific content of the ROS-scavenger glutathione (GSH) was enhanced in different tissues of the ocean quahog after 3.5 days of self-induced or forced hypoxia/anoxia to prepare for an oxidative burst. While reduced ROS formation compared to routine levels lowers oxidative stress during MRD and also during surfacing, the general preservation of high cellular defense and the efficient removal and replacement of damaged cells over lifetime seem to be of crucial importance in decelerating the senescent decline in tissues of A. islandica. Along with stable antioxidant protection over 200 years of age, proliferation rates and apoptosis intensities in most investigated tissues of the ocean quahog were low, but constant over 140 years of age. Accordingly, age-dependent accumulations of protein and lipid oxidation products are lower in A. islandica tissues when compared to the shorter-lived bivalve A. opercularis. The short-lived swimming scallop is a model bivalve species representing the opposite life and aging strategy to A. islandica. In this species permanently high energy throughput, reduced investment into antioxidant defense with age, and higher accumulation of oxidation products are met by higher cell turnover rates than in the ocean quahog. The only symptoms of physiological change over age ever found in A. islandica were decreasing cell turnover rates in the heart muscle over a lifetime of 140 years. This may either indicate higher damage levels and possibly ongoing loss of functioning in the heart of aging clams, or, the opposite, lower rates of cell damage and a reduced need for cell renewal in the heart tissue of A. islandica over lifetime. Basic physiological capacities of different A. islandica populations, measured at controlled laboratory conditions, could not explain considerable discrepancies in population specific MLSPs. For example, levels of tissue-specific antioxidant capacities and cell turnover rates were similarly high in individuals from the German Bight and from Iceland. Rather than genetic differences, the local impacts of environmental conditions on behavioral and physiological traits in the ocean quahog seem to be responsible for differences in population-specific MLSPs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metallothioneins (MTs) are a family of metal binding proteins that have been proposed to participate in a cellular defense against zinc toxicity and free radicals. In the present study, we investigated whether increased expression of MT in MT-1 isoform-overexpressing transgenic mice (MT-TG) affords protection against mild focal cerebral ischemia and reperfusion. Transient focal ischemia was induced in control (wild type) and MT-TG mice by occluding the right middle cerebral artery for 45 min. Upon reperfusion, cerebral edema slowly developed and peaked at 24 hr as shown by T2-weighted MRI. The volume of affected tissue was on the average 42% smaller in MT-TG mice compared with control mice at 6, 9, 24, and 72 hr and 14 days postreperfusion (P < 0.01). In addition, functional studies showed that 3 weeks after reperfusion MT-TG mice showed a significantly better motor performance compared with control mice (P = 0.011). Although cortical baseline levels of MT-1 mRNA were similar in control and MT-TG mice, there was an increase in MT-1 mRNA levels in the ischemic cortex of MT-TG mice to 7.5 times baseline levels compared with an increase to 2.3 times baseline levels in control mice 24 hr after reperfusion. In addition, MT-TG mice showed an increased MT immunoreactivity in astrocytes, vascular endothelial cells, and neurons 24 hr after reperfusion whereas in control mice MT immunoreactivity was restricted mainly to astrocytes and decreased in the infarcted tissue. These results provide evidence that increased expression of MT-1 protects against focal cerebral ischemia and reperfusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Ink4a/Arf locus encodes p16Ink4a and p19Arf and is among the most frequently mutated tumor suppressor loci in human cancer. In mice, many of these effects appear to be mediated by interactions between p19Arf and the p53 tumor-suppressor protein. Because Tp53 mutations are a common feature of the multistep pre-B cell transformation process mediated by Abelson murine leukemia virus (Ab-MLV), we examined the possibility that proteins encoded by the Ink4a/Arf locus also play a role in Abelson virus transformation. Analyses of primary transformants revealed that both p16Ink4a and p19Arf are expressed in many of the cells as they emerge from the apoptotic crisis that characterizes the transformation process. Analyses of primary transformants from Ink4a/Arf null mice revealed that these cells bypassed crisis. Because expression of p19Arf but not p16 Ink4a induced apoptosis in Ab-MLV-transformed pre-B cells, p19Arf appears to be responsible for these events. Consistent with the link between p19Arf and p53, Ink4a/Arf expression correlates with or precedes the emergence of cells expressing mutant p53. These data demonstrate that p19Arf is an important part of the cellular defense mounted against transforming signals from the Abl oncoprotein and provide direct evidence that the p19Arf–p53 regulatory loop plays an important role in lymphoma induction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MRP is a recently isolated ATP-binding cassette family transporter. We previously reported transfection studies that established that MRP confers multidrug resistance [Kruh, G. D., Chan, A., Myers, K., Gaughan, K., Miki, T. & Aaronson, S. A. (1994) Cancer Res. 54, 1649-1652] and that expression of MRP is associated with enhanced cellular efflux of lipophilic cytotoxic agents [Breuninger, L. M., Paul, S., Gaughan, K., Miki, T., Chan, A., Aaronson, S. A. & Kruh, G. D. (1995) Cancer Res. 55, 5342-5347]. To examine the biochemical mechanism by which MRP confers multidrug resistance, drug uptake experiments were performed using inside-out membrane vesicles prepared from NIH 3T3 cells transfected with an MRP expression vector. ATP-dependent transport was observed for several lipophilic cytotoxic agents including daunorubicin, etoposide, and vincristine, as well as for the glutathione conjugate leukotriene C4 (LTC4). However, only marginally increased uptake was observed for vinblastine and Taxol. Drug uptake was osmotically sensitive and saturable with regard to substrate concentration, with Km values of 6.3 microM, 4.4 microM, 4.2 microM, 35 nM, and 38 microM, for daunorubicin, etoposide, vincristine, LTC4, and ATP, respectively. The broad substrate specificity of MRP was confirmed by the observation that daunorubicin transport was competitively inhibited by reduced and oxidized glutathione, the glutathione conjugates S-(p-azidophenacyl)-glutathione (APA-SG) and S-(2,4-dinitrophenyl)glutathione (DNP-SG), arsenate, and the LTD4 antagonist MK571. This study establishes that MRP pumps unaltered lipophilic cytotoxic drugs, and suggests that this activity is an important mechanism by which the transporter confers multidrug resistance. The present study also indicates that the substrate specificity of MRP is overlapping but distinct from that of P-glycoprotein, and includes both the neutral or mildly cationic natural product cytotoxic drugs and the anionic products of glutathione conjugation. The widespread expression of MRP in tissues, combined with its ability to transport both lipophilic xenobiotics and the products of phase II detoxification, indicates that the transporter represents a widespread and remarkably versatile cellular defense mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Majority of the microbial activity in humans is in the form of biofilms i.e. an Exopolysaccharide-enclosed bacterial mass. Unlike planktonic cells and the cells on the surface of the biofilm, the biofilm-embedded cells are more resistant to the effects of the antibiotics and the host cellular defense mechanisms. A combination of biofilm growth and inherent resistance prevents effective antibiotics treatment of Pseudomonas aeruginosa infections including those in patients with cystic fibrosis. This has lead to an increasing interest in alternative modalities of treatment. Thus, phages that multiply in situ, only in the presence of susceptible hosts can be used as natural, self-limiting, and deeply penetrating antibacterial agents. The objective of this study is to identify effective phages against a collection of P. aeruginosa isolates (PCOR strains) including the prototype PAOl and the isogenic constitutively alginate-producing PD0300 strains.These PCOR strains were tested against six phages (P105, P134, P140, P168, P175B and P182). Analysis shows 69 % of the PCOR isolates are sensitive and the rest are resistant to all six phages. These phages were then tested for their ability to inhibit biofilm formation using a modified biofilm assay. The analysis demonstrated that the sensitive strains showed increased resistance but none of the sensitive strains from the initial screening were resistant. Using the minimum biofilm eradication concentration (MBEC) assay for biofilm formation, the biofilm eradication ability of the phages was tested. The data showed that a higher volume of phage was required to eradicate preformed biofilms than the volume required to prevent colonization of planktonic cells. This data supports the idea of phage therapy more as a prophylactic treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sponges are simple multicellularorganisms; they inhabit in marine environments from the polar seas to the tropical waterswhere they are more abundant. These species are exposed to large populations of microbes, reason that explains their complex morphological and cellular defense mechanism, which are used by these organisms to fight against pathogens. The purpose of this study was to evaluate the antibacterial activity of the marine sponge Ircinia campana, whichinhabits in the south of the Caribbean coast of Costa Rica against  Sthapylococcus aureus gram-positive bacteria. Sampleswere collected in Punta Uva in Limónduring July of 2007. The active compounds were obtainedby extraction with acetone (crude extract); and subsequently, chromatographic extracts were obtained using fractions 1:4 hexane: ethyl acetate. The antibacterial activities of the different fractions, including the  crude extract were tested.Our results suggest a zone of inhibition of 14.60 ±0.25 mm for the crude extract and18.70±0.25mm for the most active fraction separated by chromatography. The metabolite responsible for the antibacterial activity was isolated by High Performance Liquid Chromatography (HPLC)and preliminarily characterized through ultraviolet (UV) and infrared (IR) spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anêmonas-do-mar são pólipos solitários, bentônicos, de pouca mobilidade, que habitam regiões entre-marés. Devido a estas características, são organismos que podem ser atingidos diretamente pela poluição aquática, no entanto, são pouco utilizados como modelo ecotoxicológico. O cobre é um metal essencial, que em altas concentrações pode ser tóxico, sendo bastante comum em ecossistemas marinhos. Um dos mecanismos de toxicidade do cobre envolve a produção de espécies reativas de oxigênio (ERO), podendo levar as células ao estresse oxidativo, que tem como característica danos celulares, inclusive no DNA. Muitos organismos possuem um mecanismo que bombeia os xenobióticos para fora da célula – multixenobiotic resistance (MXR) – que visa prevenir as células dos danos tóxicos causados pelo contaminante. Com isso, o presente trabalho estudou a capacidade de defesa e dano ao DNA à toxicidade causada pelo cobre em células de anêmonas Bunodosoma cangicum. Para isto, células de anêmonas, mantidas em cultura primária através de explante do disco podal, foram expostas ao cobre a duas concentrações (7,8 µg.L-1 Cu e 15,6 µg.L-1 Cu), além do grupo controle, por 6 e 24 h. Antes e após as exposições as células tiveram sua viabilidade avaliada através do método de exclusão por azul de tripan (0,08%) para analisar a citotoxicidade. Parâmetros como a indução do mecanismo MXR através do método de acúmulo de rodamina-B, espécies reativas de oxigênio e ensaio cometa, também foram avaliados. Os resultados obtidos mostram que o cobre é citotóxico, sendo constatada uma queda na viabilidade e no número de células, principalmente após 24 h de exposição, sendo que na concentração de cobre de 15,6 µg.L-1 , foi possível observar uma diminuição de 40% na viabilidade e uma redução em 36% no número de células (p < 0,05, n = 6). Em relação ao fenótipo MXR, foi observada uma ativação do mecanismo apenas naquelas células expostas ao cobre 7,8 µg.L-1 (53%) no tempo de 24 h (p < 0,05, n = 5). Na análise da geração de ERO foi observado um aumento de 11,5% naquelas células expostas por 6 h na concentração mais alta de cobre 15,6 µg.L-1 . Nas células que foram expostas por 24 h, o aumento de espécies reativas pode ser percebido já na concentração de 7,8 µg.L-1 , elevando-se para cerca de 20% quando exposto a 15,6 µg.L-1 (p < 0,05, n = 4-5). Quanto ao dano de DNA, foram vistas quebras na molécula desde 7,8 µg.L-1 Cu em 6 h, com danos ainda mais salientes naquelas células expostas por 24 h, na concentração de 7,8 µg.L -1 Cu (p < 0,05, n = 3-4), e para 15,6 µg.L-1 Cu a viabilidade celular (número de células) não permitiu a análise. Com base nestes dados, pode-se dizer que o cobre, mesmo em baixas concentrações causa estresse em células de B. cangicum, sendo citotóxico. Este metal causa estresse oxidativo com dano à molécula de DNA mesmo com a ativação do mecanismo de defesa.