861 resultados para CeO2 nanoparticles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tape Casting proved to be an effective method for the production of thick films of CeO2 pure and doped with La. For this study, the nanoparticles used to form the slurry were synthesizes by the H-M method, at 100°C for 8 minutes, using KOH mineralizer. The slurry was made in aqueous solvent, requiring optimal control of surroundings conditions so that the produced tape has conditions to be studied. However, there's no toxicity or flammability in the film made by such solvent, being pleasing to the environment. The structural, optical and electrical properties of the films obtained by the Tape Casting process were studied by the methods of X-ray diffraction, scanning electron microscopy, specific surface area, Ultraviolet-visible spectroscopy and voltage-current measures, varying the electric field and frequency. From the results obtained by laboratory experiments, based on the literature, it was possible to reveal and understand some CeO2 features pure and doped with La

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of nanostructured materials have aroused great interest of the industries all over the country, since they enable the development of devices that can be used as gate insulators on silicon transistors, electrochromic devices, solid electrolyte oxygen sensors and as a photoluminescent materials . In this project, it is proposed to investigate the optical properties of CeO2 modified with rare earth Er processed in hydrothermal-microwave. The synthesis of one-dimensional nanostructures (1D) was measured from dilute aqueous solutions of acids and salts of starting reagents in the presence of chemical basis, after these aqueous solutions were processed on hydrothermal-microwave to particle growth. The particles obtained after processing were characterized by X-ray Diffraction, Rietveld Analysis and Raman Spectroscopy. The particle morphology was observed by scanning electron microscopy with field emission gun. The synthesis of 1D nanostructures are evaluated for different surfactants and starting precursors (ceria different salts), pH, temperature and pressure which can modify the morphology of the nanostructures. Combining laboratory experiments and theoretical calculations it was desired to understand the organization of the nanoparticles and their resulting structure. Strict control of chemical homogeneity, crystal structure, microstructure and interaction of the CeO2 cluster with different surfactants using the Hartree-Fock method, was intended to obtain properties compatible with their use in catalysts and optical devices. The use of mineralizer agent KOH and 8 minutes of processing time synthesis conditions were chosen to evaluate the effect of Er dopant. It has been proved that this doping with rare earth increases the photoluminescent properties of the compound obtained without change the structural and morphological propreties of ceria

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tape Casting proved to be an effective method for the production of thick films of CeO2 pure and doped with La. For this study, the nanoparticles used to form the slurry were synthesizes by the H-M method, at 100°C for 8 minutes, using KOH mineralizer. The slurry was made in aqueous solvent, requiring optimal control of surroundings conditions so that the produced tape has conditions to be studied. However, there's no toxicity or flammability in the film made by such solvent, being pleasing to the environment. The structural, optical and electrical properties of the films obtained by the Tape Casting process were studied by the methods of X-ray diffraction, scanning electron microscopy, specific surface area, Ultraviolet-visible spectroscopy and voltage-current measures, varying the electric field and frequency. From the results obtained by laboratory experiments, based on the literature, it was possible to reveal and understand some CeO2 features pure and doped with La

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study using different proportions of CeO2/C (4%, 9% and 13% CeO2) was performed to produce H2O2, a reagent used in the oxidation of organic pollutants and in electro-Fenton reactions for the production of the hydroxyl radical (OH center dot), a strong oxidant agent used in the electrochemical treatment of aqueous wastewater. The CeO2/C materials were prepared by a modified polymeric precursor method (PPM). X-ray diffraction analysis of the CeO2/C prepared by the PPM identified two phases. CeO2 and CeO2. The average size of the crystallites in these materials was close to 7 nm. The kinetics of the oxygen reduction reaction (ORR) were evaluated by the rotating ring-disk electrode technique. The results showed that the 4% CeO2/C prepared by the PPM was the best composite for the production of H2O2 in a 1 mol L-1 NaOH electrolyte solution. For this material, the number of electrons transferred and the H2O2 percentage efficiency were 3.1 and 44%, respectively. The ring-current of the 4% CeO2/C was higher than that of Vulcan carbon, the reference material for H2O2 production, which produced 41% H2O2 and transferred 3.1 electrons per molecule of oxygen. The overpotential for this reaction on the ceria-based catalyst was substantially lower (approximately 200 mV), demonstrating the higher catalytic performance of this material. Gas diffusion electrodes (GDE) containing the catalyst were used to evaluate the real amount of H2O2 produced during exhaustive electrolysis. The 4% CeO2/C GDE produced 871 mg L-1 of H2O2, whereas the Vulcan carbon GDE produced a maximum amount of only 407 mg L-1. Thus, the 4% CeO2/C electrocatalyst prepared by the PPM is a promising material for H2O2 electrogeneration in alkaline media. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanotechnology promises huge benefits for society and capital invested in this new technology is steadily increasing, therefore there is a growing number of nanotechnology products on the market and inevitably engineered nanomaterials will be released in the atmosphere with potential risks to humans and environment. This study set out to extend the comprehension of the impact of metal (Ag, Co, Ni) and metal oxide (CeO2, Fe3O4, SnO2, TiO2) nanoparticles (NPs) on one of the most important environmental compartments potentially contaminated by NPs, the soil system, through the use of chemical and biological tools. For this purpose experiments were carried out to simulate realistic environmental conditions of wet and dry deposition of NPs, considering ecologically relevant endpoints. In detail, this thesis involved the study of three model systems and the evaluation of related issues: (i) NPs and bare soil, to assess the influence of NPs on the functions of soil microbial communities; (ii) NPs and plants, to evaluate the chronic toxicity and accumulation of NPs in edible tissues; (iii) NPs and invertebrates, to verify the effects of NPs on earthworms and the damaging of their functionality. The study highlighted that NP toxicity is generally influenced by NP core elements and the impact of NPs on organisms is specie-specific; moreover experiments conducted in media closer to real conditions showed a decrease in toxicity with respect to in vitro test or hydroponic tests. However, only a multidisciplinary approach, involving physical, chemical and biological skills, together with the use of advanced techniques, such as X-ray absorption fine structure spectroscopy, could pave the way to draw the right conclusions and accomplish a deeper comprehension of the effects of NPs on soil and soil inhabitants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using metal supported catalysts. Catalysts were prepared from the immobilisation of preformed monometallic (Au, Pd) and bimetallic (AuCu, AuPd) nanoparticles on commercial oxides (TiO2, CeO2). Au-TiO2 catalyst was found to be very active for HMF oxidation; however, this system deactivated very fast. For this reason, we prepared bimetallic gold-copper nanoparticles and an increase in the catalytic activity was observed together with an increase in catalyst stability. In order to optimise the interaction of the metal active phase with the support, Au and AuCu nanoparticles were supported onto CeO2. Au-CeO2 catalyst was found to be more active than the bimetallic one, leading to the conclusion that in this case the most important feature is the interaction between gold and the support. Catalyst pre-treatments (calcination and washing) were carried out to maximise the contact between the metal and the oxide and an increase in the FDCA production could be observed. The presence of ceria defective sites was crucial for FDCA formation. Mesoporous cerium oxide was synthesised with the hard template method and was used as support for Au nanoparticles to promote the catalytic activity. In order to study the role of active phase in HMF oxidation, PdAu nanoparticles were supported onto TiO2. Au and Pd monometallic catalysts were very active in the formation of HMFCA (5-hydroxymethyl-2-furan carboxylic acid), but Pd was not able to convert it, leading to a low FDCA yield. The calcination of PdAu catalysts led to Pd segregation on the particles surface, which changed the reaction pathway and included an important contribution of the Cannizzaro reaction. PVP protected PdAu nanoparticles, synthesised with different morphologies (core-shell and alloyed structure), confirmed the presence of a different reaction mechanism when the metal surface composition changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the WGS performance of a conventional Ni/CeO2 bulk catalyst is compared to that of a carbon-supported Ni-CeO2 catalyst. The carbon-supported sample resulted to be much more active than the bulk one. The higher activity of the Ni-CeO2/C catalyst is associated to its oxygen storage capacity, a parameter that strongly influences the WGS behavior. The stability of the carbon-supported catalyst under realistic operation conditions is also a subject of this paper. In summary, our study represents an approach towards a new generation of Ni-ceria based catalyst for the pure hydrogen production via WGS. The dispersion of ceria nanoparticles on an activated carbon support drives to improved catalytic skills with a considerable reduction of the amount of ceria in the catalyst formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, the preferential oxidation of CO in excess hydrogen (PROX reaction) was studied over Au catalysts supported on ceria and Y or Nb doped ceria. Both supports and catalysts have been extensively characterized by a number of advanced techniques; XRD, N2-adsortion, Raman spectroscopy, XPS, and H2-TPR. The catalytic results showed that when an ideal mixture of H2 and CO is used for the PROX reaction the gold supported on pure ceria behaves better than the others samples. However, when a typical reformate gas composition containing CO2 and H2O is used, the gold supported on Nb doped sample behaves better than gold supported in pure ceria. It is suggested that niobium hampers the strong adsorption of CO2 and H2O in the active sites, thus improving the catalytic performance in real reformate gas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A platinum (Pt) on pure ceria (CeO2) supported by carbon black (CB) anode was synthesized using a combined process of precipitation and coimpregnation methods. The electrochemical activity of methanol oxidation reaction on synthesized Pt-CeO2/CB anodes was investigated by cyclic voltammetry and chronoamperometry experimentation. To improve the anode property on Pt-CeO2/CB, the influence of particle morphology and particle size on anode properties was examined. The morphology and particle size of the pure CeO2 particles could be controlled by changing the preparation conditions. The anode properties (i.e., peak current density and onset potential for methanol oxidation) were improved by using nanosize CeO2 particles. This indicates that a larger surface area and higher activity on the surface of CeO2 improve the anode properties. The influence of particle morphology of CeO2 on anode properties was not very large. The onset potential for methanol oxidation reaction on Pt-CeO2/CB, which consisted of CeO2 with a high surface area, was shifted to a lower potential compared with that on the anodes, which consisted of CeO2 with a low surface area. The onset potential on Pt-CeO2/CB at 60 degrees C became similar to that on the commercially available Pt-Ru/carbon anode. We suggest that the rate-determining steps of the methanol oxidation reaction on Pt-CeO2/CB and commercially available Pt-Ru/carbon anodes are different, which accounts for the difference in performance. In the reaction mechanism on Pt-CeO2/CB, we conclude that the released oxygen species from the surface of CeO2 particles contribute to oxidation of adsorbed CO species on the Pt surface. This suggests that the anode performance of the Pt-CeO2/CB anode would lead to improvements in the operation of direct methanol fuel cells at 80 degrees C by the enhancement of diffusion of oxygen species created from the surface of nanosized CeO2 particles. Therefore, we conclude that fabrication of nanosized CeO2 with a high surface area is a key factor for development of a high-quality Pt-CeO2/CB anode in direct methanol fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selective liquid phase hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on SiO2, ZnO, γ-Al2O3, CeO2 is reported under extremely mild conditions. Ambient hydrogen pressure, and temperatures as low as 50 °C are shown sufficient to drive furfural hydrogenation with high conversion and >99% selectivity to furfuryl alcohol. Strong support and solvent dependencies are observed, with methanol and n-butanol proving excellent solvents for promoting high furfuryl alcohol yields over uniformly dispersed 4 nm Pt nanoparticles over MgO, CeO2 and γ-Al2O3. In contrast, non-polar solvents conferred poor furfural conversion, while ethanol favored acetal by-product formation. Furfural selective hydrogenation can be tuned through controlling the oxide support, reaction solvent and temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paraquat is a fast acting nonselective contact herbicide that is extensively used worldwide. However, the aqueous solubility and soil sorption of this compound can cause problems of toxicity in nontarget organisms. This work investigates the preparation and characterization of nanoparticles composed of chitosan and sodium tripolyphosphate (TPP) to produce an efficient herbicidal formulation that was less toxic and could be used for safer control of weeds in agriculture. The toxicities of the formulations were evaluated using cell culture viability assays and the Allium cepa chromosome aberration test. The herbicidal activity was investigated in cultivations of maize (Zea mays) and mustard (Brassica sp.), and soil sorption of the nanoencapsulated herbicide was measured. The efficiency association of paraquat with the nanoparticles was 62.6 ± 0.7%. Encapsulation of the herbicide resulted in changes in its diffusion and release as well as its sorption by soil. Cytotoxicity and genotoxicity assays showed that the nanoencapsulated herbicide was less toxic than the pure compound, indicating its potential to control weeds while at the same time reducing environmental impacts. Measurements of herbicidal activity showed that the effectiveness of paraquat was preserved after encapsulation. It was concluded that the encapsulation of paraquat in nanoparticles can provide a useful means of reducing adverse impacts on human health and the environment, and that the formulation therefore has potential for use in agriculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni(1-x)FexO nanoparticles have been obtained by the co-precipitation chemical route. X-ray diffraction analyses using Rietveld refinement have shown a slight decrease in the microstrain and mean particle size as a function of the Fe content. The zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves show superparamagnetic behavior at high temperatures and a low temperature peak (at T = 11 K), which is enhanced with increasing Fe concentration. Unusual behavior of the coercive field in the low temperature region and an exchange bias behavior were also observed. A decrease in the Fe concentration induces an increase in the exchange bias field. We argue that these behaviors can be linked with the strengthening of surface anisotropy caused by the incorporation of Fe ions.