94 resultados para Ce0.8Zr0.2O2
Resumo:
Menezesite, ideally Ba2MgZr4(BaNb12O42)center dot 12H(2)O, occurs as a vug mineral in the contact zone between dolomite carbonatite and ""jacupirangite"" (=a pyroxenite) at the Jacupiranga mine, in Cajati county, Sao Paulo state, Brazil, associated with dolomite, calcite, magnetite, clinohumite, phlogopite, ancylite-(Ce), strontianite, pyrite, and tochilinite. This is also the type locality for quintinite-2H. The mineral forms rhombododecahedra up to I mm, isolated or in aggregates. Menezesite is transparent and displays a vitreous luster; it is reddish brown with a white streak. It is non-fluorescent. Mohs hardness is about 4. Calculated density derived from the empirical formula is 4.181 g/cm(3). It is isotropic, 1.93(1) (white light); n(calc) = 2.034. Menezesite exhibits weak anomalous birefringence. The empirical formula is (Ba1.47K0.53Ca0.3,Ce0.17Nd0.10Na0.06La0.02)(Sigma 2.66)(Mg0.94Mn0.23Fe0.23Al0.03)(Sigma 1.43)(Zr2.75Ti0.96Th0.29)(Sigma 4.00)[(Ba0.72Th0.26U0.02)(Sigma 1.00)(Nb9.23Ti2.29Ta0.36Si0.12)Sigma O-12.00(42)]center dot 12H(2)O. The mineral is cubic, space group 10 (204), a = 13.017(1) angstrom, V = 2206(1) angstrom(3), Z = 2. Menezesite is isostructural with the synthetic compound Mg-7[MgW12O42](OH)(4)center dot 8H(2)O. The mineral was named in honor of Luiz Alberto Dias Menezes Filho (born 1950), mining engineer, mineral collector and merchant. Both the description and the name were approved by the CNMMN-IMA (Nomenclature Proposal 2005-023). Menezesite is the first natural heteropolyniobate. Heteropolyanions have been employed in a range of applications that include virus-binding inorganic drugs (including the AIDs virus), homogeneous and heterogeneous catalysts, electro-optic and electrochromic materials, metal and protein binding, and as building blocks for nanostructuring of materials.
Resumo:
O trabalho descreve a ocorrência de gagarinita-(Y) das porções mineralizadas de criolita da base do Depósito Criolítico Maciço associado à subfácies albita granito do Granito Madeira (1.8Ma) na jazida de Pitinga (Sn, Nb, Ta e criolita), onde o Y e ETR serão explorados como co-produtos. A gagarinita forma cristais anédricos de até 7mm, intersticiais ou inclusos na criolita, de cristalização anterior à criolita dos bolsões. Todos os cristais apresentam texturas típicas de exsolução, pela primeira vez descritas em fluoretos. Os padrões de exsolução são variados. Os cristais exsolvidos têm até 0,4mm, são incolores, as cores de interferência são de primeira ordem, com birrefringência 0,005-0,007, são U(-), com retardo de 150 a 210nm. A fase exsolvida distribui-se uniformemente em toda a extensão dos grãos da gagarinita-(Y), inclusive na borda; segue uma ou mais orientações preferenciais e tem dimensões semelhantes. Podem ocorrer coalescência de diferentes cristais exsolvidos, resultando em strings e stringlets. Mais raramente, a orientação é menos evidente e as dimensões dos cristais são mais variáveis No contato gagarinita/criolita, reconhece-se a formação da fase exsolvida como anterior à cristalização da criolita. A análise modal de uma população de grãos de gagarinita-(Y) com os diversos padrões texturais de exsolução fornece o valor médio de 25,8% (considerado estatisticamente representativo) de proporção de fase exsolvida em relação à fase hospedeira. Os parâmetros cristalinos da gagarinita-(Y) determinados a partir de análises por DRX são compatíveis com os da literatura. Análises por MSE, FRX e MEV da gagarinita-(Y) mostram uma composição bastante homogênea. A fórmula estrutural média calculada na base de 2(ETR+Y+Ca) é Na0,24Ca0,58Y1,01ETR0,39F5,81. O padrão de ETR normalizado ao condrito é caracterizado por enriquecimento em ETRP e anomalia negativa em Eu. A composição da fase exsolvida obtida por MSE, calculada para um total de cátions igual a 1, é Ce0,53-0,66 La0,09-0,26 Nd0,08-0,26 Sm0,01-0,04 Eu0,01Y0-0,03 F3,3-4,14. Esta fórmula é semelhante à da fluocerita, cujos picos característicos, entretanto, não ocorrem nos difratogramas. O padrão de ETR mostra um fracionamento contínuo dos ETR com empobrecimento em ETRP e discreta anomalia positiva em Eu. A composição da gagarinita inicial foi reconstituída considerando-se as proporções modais das fases hospedeira e exsolvida, obtendo-se Na0,19Ca0,48Y0,83ETR0,69F6,27. O padrão de ETR é plano com anomalia negativa em Eu menos acentuada que na gagarinita hospedeira Antes da exsolução, o sistema mineral comportava-se provavelmente como uma solução sólida com a substituição - + 2ETR3+<=> Na+ + Ca2+ + Y3+ . Formou-se, assim, uma gagarinita inicial excepcionalmente rica em ETRL (cátions relativamente grandes) cuja presença foi compensada por vacâncias, notadamente no sítio de coordenação VI. A diminuição da temperatura desestabilizou a estrutura mineral que exsolveu os cátions de ETR com raio iônico maior que o do Sm. A gagarinita hospedeira preservou os conteúdos de Y, ETRP (com exceção do Sm que se repartiu entre ela e a fase exsolvida) e Na (e Ca), constituindo uma estrutura estável, menos afetada por vacâncias e com um balanço de cargas bastante equilibrado. A fase exsolvida é um fluoreto com razão cátions/flúor= 1/3, correspondendo à composição da fluocerita. Sua estrutura não pôde ser determinada: picos da fluocerita não foram identificados e uma estrutura semelhante à da gagarinita (razão cátions/flúor= 1/2) parece pouco provável. Estudos subseqüentes poderão definir se trata-se de um novo mineral, polimorfo da fluocerita.
Resumo:
The direct use of natural gas makes the Solid Oxide Fuel Cell (SOFC) potentially more competitive with the current energy conversions technologies. The Intermediate Temperature SOFC (IT-SOFC) offer several advantages over the High Temperature SOFC (HT-SOFC), which includes better thermal compatibility among components, fast start with lower energy consumption, manufacture and operation cost reduction. The CeO2 based materials are alternatives to the Yttria Stabilized Zirconia (YSZ) to application in SOFC, as they have higher ionic conductivity and less ohmic losses comparing to YSZ, and they can operate at lower temperatures (500-800°C). Ceria has been doped with a variety of cations, although, the Gd3+ has the ionic radius closest to the ideal one to form solid solution. These electrolytes based in ceria require special electrodes with a higher performance and chemical and termomechanical compatibility. In this work compounds of gadolinia-doped ceria, Ce1-xGdxO2-δ (x = 0,1; 0,2 and 0,3), used as electrolytes, were synthesized by polymeric precursors method, Pechini, as well as the composite material NiO - Ce0,9Gd0,1O1,95, used as anode, also attained by oxide mixture method, mixturing the powders of the both phases calcinated already. The materials were characterized by X ray diffraction, dilatometry and scanning electronic microscopy. The refinement of the diffraction data indicated that all the Ce1-xGdxO2-δ powders were crystallized in a unique cubic phase with fluorite structure, and the composite synthesized by Pechini method produced smaller crystallite size in comparison with the same material attained by oxide mixture method. All the produced powders had nanometric characteristics. The composite produced by Pechini method has microstructural characteristics that can increase the triple phase boundaries (TPB) in the anode, improving the cell efficiency, as well as reducing the mass transport mechanism effect that provokes anode degradation
Resumo:
The present work aims the preparation of filmes of strontium-doped lanthanum manganite (perovskita) yttria-stabilized zirconia (LSM-SDC) films deposited on substrate of YSZ by means of spin coating technique having as principal objective their application to solid oxide fuel cells of intermediate temperature. La0,8Sr0,2MnO3 and Ce0,8Sm0,2O1,9 were obtained by modified Pechini method by use of gelatin which act as polymerization agent. The powders obtained were characterized by Xray fluorescence, X ray diffraction, electronic scanning microscopy and the superficial area by BET method. The results obtained by X-ray fluorescence showed that the route adopted for obtention of powders was effective in the obtention of the compositions with close values to the stoichiometrics. Ethyl cellulose was used as pore-forming agent and mixed with the LSM-SDC powders in weight proportions of 1:24, 2:23 and 1:9. The films were sintered at 1150 °C for 4 h and characterized by X-ray diffraction and scanning electron microscopy technique (SEM) and atomic force. The phases quantification of the precursory powders and of the obtained films was carried through Rietveld method. According with the analysis of SEM, as the content of ethyl cellulose was increased, the pore distribution in films become more uniform and the pore size reduced. The methodology used for the obtention of the films was very efficient, considering a material was obtained with characteristics that were proper to the application as electrolyte/cathode system to solid oxide fuel cells
Resumo:
Structural and textural studies of a CuO/TiO2 System modified by cerium oxide were conducted using Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N-2 absorption (BET specific surface area). The introduction of a minor amount of CeO2 (Ce0.09Ti0.82O1.91CU0.09 sample) resulted in a material with the maximum surface area value. The results of Raman spectroscopy revealed the presence of only two crystalline phases, TiO2 anatase and CeO2 cerianite, with well-dispersed copper species. TEM micrographs showed a trend toward smaller TiO2 crystallites when the cerium oxide content was increased. The XPS analysis indicated the rise of a second peak in Ti 2p spectra with the increasing amount of CeO2 located at higher binding energies than that due to the Till in a tetragonal symmetry. The CuO/TiO2 system modified by CeO2 displayed a superior performance for methanol dehydrogenation than the copper catalyst supported only on TiO2 or CeO2.
Resumo:
The use of biosolids in horticulture could contribute to recycle residues produced by men. This study analyzed concentrations of Cu, Mn and Zn in the compost during fermentation, in the soil amended with the composts and in the tomato plant materials. Five composts were produced using sugar-cane bagasse, biosolid and cattle manure in the proportions: 75-0-25; 75-12.5-12.5; 75-25-0; 50-50- 0 and 0-100-0 (composts with 0; 12.5; 25; 50 and 100% biosolid), respectively. These composts were used in an experiment with 6 treatments (the 5 composts and a control with mineral fertilization) in a design of randomized blocks with a split plot design. The control and the treatment of 0% biosolid received inorganic nitrogen. All the treatments received the same amount of N, P and K. Two tomato plants were cultivated in each 24 L pot, in a greenhouse at the Technology Department of the Faculdade de Ciências Agrárias e Veterinárias of the Universidade Estadual Paulista in Jaboticabal County, São Paulo State, Brazil. The concentrations of Cu, Mn and Zn were evaluated in the compost 7, 27, 57, 97 and 127 days after composting began, in the soil 0 and 164 days after the compost applied, and in the plants. Compost, soil and plant samples were subjected to digestion with HNO3, H 2O2 and HCl and the metals were determined by AAS. There were positive and significant correlations between Mn in the compost and Mn uptake by the plant (0.46 p>0.05), and between Zn in the compost and Zn concentration in the plant (0.78 p>0.05). Cu, Mn and Zn concentrations increased during composting. The biosolid in the compost supplied Cu and Zn to tomato plants, and the cattle manure supplied Mn to the plants.
Resumo:
The effect of combining the photocatalytic processes using TiO 2 and the photo-Fenton reaction with Fe3+ or ferrioxalate as a source of Fe2+ was investigated in the degradation of 4-chlorophenol (4CP) and dichloroacetic acid (DCA) using solar irradiation. Multivariate analysis was used to evaluate the role of three variables: iron, H2O2 and TiO2 concentrations. The results show that TiO2 plays a minor role when compared to iron and H2O2 in the solar degradation of 4CP and DCA in the studied conditions. However, its presence can improve TOC removal when H2O2 is totally consumed. Iron and peroxide play major roles, especially when Fe(NO3)3 used in the degradation of 4CP. No significant synergistic effect was observed by the addition of TiO 2 in this process. On the other hand, synergistic effects were observed between FeOx and TiO2 and between H 2O2 and TiO2 in the degradation of DCA. © IWA Publishing 2004.
Resumo:
The immunological response includes wide contexts involving several cells, and the macrophage is crucial in the cellular immune response. Several stimuli to macrophage membrane may induce the liberation of H2O2, contributing to antibacterial and cytotoxicical actions. Nowadays, there is a tendency to study natural products to verify their capacity of acting in the immune system. This study evaluated the citotoxicity of the bulk extract and the hexanic and acetic fractions extracted from Styrax camporum Pohl (Styracaceae) and the production of H2O2, on murine peritonal macrophages cultures exposed to fractions extracted from this plant. The results showed that the fraction HX 2 mg/ml produced the liberation of H 2O2 in high concentrations and to 4 mg/ml was observed high citotoxicity. The fractions AC did not produce the liberation of H 2O2 and EB was produced in low levels. We conclude that this HX is a potent stimulator of macrophage.
Resumo:
Apocynin is the most employed inhibitor of NADPH oxidase (NOX), a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V), the hydrophobicity index was calculated (logP = 0.83) and the molar absorption coefficient was determined (ε275nm = 1.1 × 104 M-1 cm-1). Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays) when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H 2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA) with a binding affinity of 2.19 × 104 M -1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.
Resumo:
The aim of the present study was to compare the degradation kinetics of low (1 mg L-1) and high (25 mg L-1) concentrations of ciprofloxacin (CIP) aiming to decrease the concentration of additives and evaluate the pH limitation by the use of low iron concentrations and organic ligands. A parameterized kinetic model was satisfactorily fitted to the experimental data in order to study the performance of photo-Fenton process with specific iron sources (iron citrate, iron oxalate, iron nitrate) under different pH medium (2.5, 4.5, 6.5). The process modeling allowed selecting those process conditions (iron source, additives concentrations and pH medium) which maximize the two performance parameters related to the global equilibrium conversion and kinetic rate of the process. For the high CIP concentration, degradation was very influenced by the iron source, resulting in much lower efficiency with iron nitrate. At pH 4.5, highest TOC removal (0.87) was achieved in the presence of iron citrate, while similar CIP conversions were obtained with oxalate and citrate (0.98 after 10 min). For the low CIP concentration, much higher conversion was observed in the presence of citrate or oxalate in relation to iron nitrate up to pH 4.5. This behavior denotes the importance of complexation also at low dosages. Appropriate additives load (320 μM H 2O2; 6 μM Fe) resulted in a CIP conversion of 0.96 after10 min reaction with citrate up to pH 4.5. © 2013 Elsevier B.V. All rights reserved.
Resumo:
A series of four different powders ceria doped Ce1-xErxO2-delta (0.05 <= x <= 0.20) were synthesized by applying self-propagating reaction at room temperature (SPRT method). SPRT procedure is based on the self-propagating room temperature reaction between metal nitrates and sodium hydroxide, wherein the reaction is spontaneous and terminates extremely fast. The method is known to assure very precise stoichiometry of the final product in comparison with a tailored composition. XRPD, Raman spectroscopy, TEM and BET measurements were used to characterize the nanopowders at room temperature. It was shown that all obtained powders were single phase solid solutions with a fluorite-type crystal structure and all powder particles have nanometric size (about 3-4 nm). Densification was performed at 1550 degrees C, in an air atmosphere for 2 h. XRPD, SEM and complex impedance method measurements were carried out on sintered samples. Single phase form was evidenced for each sintered materials. The best value of conductivity at 700 degrees C amounted to 1.10 x 10(-2) Omega(-1) cm(-1) for Ce0.85Er0.O-3(2-delta) sample. Corresponding activation energies of conductivity amounted to 0.28 eV in the temperature range 500-700 degrees C. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Magnetization measurements were performed on CeCoIn5 at temperatures down to 20 mK and magnetic fields up to 17 T applied along different crystallographic orientations. For field configurations nearly parallel to the ab plane (theta less than or similar to 40 degrees and T <= 50 mK), we have found an intriguing vortex dynamics regime revealed by a hysteretic and metastable anomalous peak effect (APE), which gives evidence of surface barrier effects enhanced by antiferromagnetic fluctuations in the mixed state of CeCoIn5. Furthermore, we have observed crossover features in the torque and magnetization traces at fields below H-c2, which are consistent with vortices lattice phase transitions and with the anomalies speculated to be the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in CeCoIn5. All of the above features were found to be dramatically perturbed in Ce0.98Gd0.02CoIn5.
Resumo:
PEM fuel cells seem to be the most affordable and commercially viable hydrogen-based cells, the biggest challenge being to obtain CO-free H-2 (<100 ppm) as the fuel. In this study, the use of CuO-CeO2 catalysts in preferential oxidation of CO to obtain CO-free H-2 (PROX reaction) was investigated. Ce1-xCuxO2 catalysts, with x (mol%) = 0, 0.01, 0.03, 0.05 and 0.10, were synthesized in one-step by the polymeric precursor method, to obtain a very fine dispersion and strong metal-support interaction, to favor active copper species and a preference for the PROX reaction. The results obtained from catalyzed reactions and characterization of the catalysts by XRD, Rietveld refinement, BET surface area, UV-Vis and TPR, suggest that this one-step synthesis method gives rise to catalysts with copper species selective for the PROX reaction, which reaches a maximum rate on Ce0.97Cu0.03O2 catalyst. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The present study is focused on the development of new VIII group metal on CeO2 – ZrO2 (CZO) catalyst to be used in reforming reaction for syngas production. The catalyst are tested in the oxyreforming process, extensively studied by Barbera [44] in a new multistep process configuration, with intermediate H2 membrane separation, that can be carried out at lower temperature (750°C) with respect the reforming processes (900 – 1000°C). In spite of the milder temperatures, the oxy-reforming conditions (S/C = 0.7; O2/C = 0.21) remain critical regarding the deactivation problems mainly deriving from thermal sintering and carbon formation phenomena. The combination of the high thermal stability characterizing the ZrO2, with the CeO2 redox properties, allows the formation of stable mixed oxide system with high oxygen mobility. This feature can be exploited in order to contrast the carbon deposition on the active metal surface through the oxidation of the carbon by means of the mobile oxygen atoms available at the surface of the CZO support. Ce0.5Zr0.5O2 is the phase claimed to have the highest oxygen mobility but its formation is difficult through classical synthesis (co-precipitation), hence a water-in-oil microemulsion method is, widely studied and characterized. Two methods (IWI and bulk) for the insertion of the active metal (Rh, Ru, Ni) are followed and their effects, mainly related to the metal stability and dispersion on the support, are discussed, correlating the characterization with the catalytic activity. Different parameters (calcination and reduction temperatures) are tuned to obtain the best catalytic system both in terms of activity and stability. Interesting results are obtained with impregnated and bulk catalysts, the latter representing a new class of catalysts. The best catalysts are also tested in a low temperature (350 – 500°C) steam reforming process and preliminary tests with H2 membrane separation have been also carried out.
Resumo:
Sign.: A-Z4, 2A-2D4, 2E-2O2