996 resultados para Cassure double-brin
Resumo:
Le virus de l’immunodéficience humaine de type 1 (VIH-1) est responsable de la pandémie du SIDA (syndrome de l’immunodéficience acquise). Des souches virales résistantes aux antirétroviraux actuellement utilisés apparaissent rapidement. Il est donc important d’identifier de nouvelles cibles dans le cycle de réplication du VIH-1 pour développer de nouveaux agents contre ce virus. La traduction des protéines de structure et des enzymes du VIH-1 est une étape essentielle du cycle de réplication virale. Ces protéines sont exprimées à partir de l’ARN messager (ARNm) pleine-longueur (ARNmPL) à la fin du cycle de réplication. L’ARNmPL du VIH-1 peut utiliser un mode d’initiation de la traduction coiffe-dépendant, comme la majorité des ARNm cellulaires, mais peut aussi utiliser un mode d’initiation alternatif, car sa région 5’ non-traduite (5’UTR) contient un site interne d’entrée du ribosome (IRES), ce qui lui permet d’initier la traduction suivant un mode IRES-dépendant. L’initiation IRES-dépendante permet à l’ARNmPL d’être traduit quand l’initiation coiffe-dépendante est inhibée. L’activité de l’IRES de la région 5’UTR de l’ARNmPL du VIH-1 (IRES5’UTR) est faible dans des conditions physiologiques, mais est stimulée lorsque la cellule est arrêtée à la transition G2/M du cycle cellulaire, un arrêt qu’induit l’infection par le VIH-1. Une grande portion de l’IRES5’UTR, que nous nommons IRES5’UTRc, est présente dans tous les ARNm viraux et a une activité semblable à celle de l’ IRES5’UTR, ce qui indique que le mode IRES-dépendant peut être utilisé par tous les messagers du VIH-1. Lors de mes études doctorales, j’ai caractérisé le fonctionnement de l’IRES5’UTR du VIH-1. J’ai transfecté des cellules lymphocytaires Jurkat T, dérivées des cibles naturelles du VIH-1, avec un vecteur dual-luciférase contenant les séquences codantes des luciférases de la Renilla (Rluc) et de la luciole (Fluc) séparées par la région 5’UTR de l’ARNmPL du VIH-1. La traduction de la Rluc est coiffe-dépendante alors que celle de la Fluc dépend de l’IRES5’UTR. J’ai d’abord effectué une analyse mutationnelle et j’ai identifié trois régions qui stimulent l’activité de l’IRES5’UTR et une tige-boucle qui réprime l’activité de cet IRES, que j’ai nommée IRENE (IRES negative element). J’ai montré que l’effet répresseur d’IRENE est aboli lorsque les cellules sont soumises à un stress oxydatif, un type de stress induit lors d’une infection par le VIH-1. Nous proposons que IRENE maintiendrait l’IRES5’UTR dans une conformation peu active dans des conditions physiologiques. On sait que les IRES sont activés par divers facteurs cellulaires, appelés ITAF (IRES trans-acting factors). Nous proposons que l’IRES5’UTR adopterait une conformation active suite à la liaison d’un ITAF exprimé ou relocalisé lors d’un stress oxydatif. Ces travaux ont fait l’objet d’une publication (Gendron et al., 2011, Nucleic Acids Research, 39, 902-912). J’ai ensuite étudié l’effet de la protéine virale Tat sur l’activité de l’IRES5’UTR. En plus de son rôle essentiel dans la transactivation de la transcription des ARNm viraux, Tat stimule leur traduction coiffe-dépendante, en empêchant l’inhibition d’un facteur d’initiation canonique, eIF2, induite par la protéine kinase modulée par l’ARN double-brin (PKR) et en déroulant la structure TAR présente à l’extrémité 5’ de tous les ARNm du VIH-1. Elle affecte aussi l’expression de plusieurs gènes cellulaires. J’ai montré que les isoformes Tat86 et Tat72, mais non Tat101, stimulent l’activité de l’IRES5’UTR. Cet effet est indépendant de PKR et de TAR, mais dépendrait de la conformation de Tat. Nous proposons que Tat activerait un facteur de transcription cellulaire qui déclenche l’expression d’un ITAF de l’IRES5’UTR ou encore qu’elle activerait directement un tel ITAF. J’ai de plus montré que PKR stimule l’activité de l’IRES5’UTR, ce qui est surprenant puisque PKR est une protéine antivirale. Cet effet est indépendant de l’inhibition d’eIF2 par PKR et pourrait résulter de l’activation d’un ITAF. Sachant qu’une portion active de l’IRES5’UTR, IRES5’UTRc, est présente dans tous les ARNm viraux, notre hypothèse est que la stimulation de cet IRES par PKR permettait de traduire l’ARNm de Tat au début du cycle de réplication, ce qui permettrait ensuite la traduction coiffe-dépendante des ARNm du VIH-1, qui est stimulée par Tat. Ces travaux font l’objet d’un manuscrit (Gendron et al., soumis à RNA). Mes résultats, couplés aux données de la littérature, me conduisent à la conclusion que, à la fin du cycle de réplication du VIH-1, l’activité de l’IRES5’UTR est stimulée par le stress oxydatif, l’arrêt en G2/M et la présence de quantités élevées de Tat, alors que la traduction coiffe-dépendante est compromise. L’initiation IRES-dépendante serait alors indispensable pour que le VIH-1 traduise l’ARNmPL. L’IRES5’UTR constituerait donc une cible très intéressante pour développer des agents anti-VIH.
Resumo:
La régulation post-transcriptionnelle joue un rôle de premier plan dans le contrôle fin de l’expression génique en permettant une modulation de la synthèse de protéines dans le temps et l’espace, en fonction des besoins de la cellule. Ainsi, des protéines reconnaissant des éléments d’ARN présents sur des transcrits peuvent influencer toutes les étapes de leur existence, soit leur épissage, leur export nucléaire, leur localisation subcellulaire, leur traduction et leur dégradation. Staufen1 (Stau1) est un membre de la famille des protéines liant l’ARN double-brin qui contribue à la régulation post-transcriptionnelle par son implication dans des mécanismes qui vont promouvoir l’épissage alternatif, le transport, la dé-répression de la traduction et l’induction de la dégradation d’ARN messagers (ARNm) spécifiques. L’identité des cibles potentielles de Stau1 est maintenant connue puisqu’une étude à l’échelle du génome a montré que la protéine s’associe à près de 7% du transcriptome des cellules HEK293T. Ces ARNm se classent dans un large éventail de catégories fonctionnelles, mais il est tout de même intéressant de noter qu’une grande proportion d’entre eux code pour des protéines reliées au métabolisme cellulaire et à la régulation de processus cellulaires. En considérant toutes ces informations, nous avons émis l’hypothèse que les différentes activités de Stau1 puissent être modulées afin de contrôler adéquatement l’expression des transcrits liés par la protéine. Dans la mesure où certains ARNm faisant partie des complexes définis par la présence de Stau1 codent pour des régulateurs clés de la prolifération cellulaire, nous avons voulu examiner si l’expression de la protéine varie au cours du cycle de division cellulaire. Nous avons montré que l’abondance de Stau1 est maximale en début de mitose et qu’elle diminue ensuite lorsque les cellules complètent la division cellulaire. Nous avons ensuite découvert que cette baisse d’expression de Stau1 en sortie de mitose dépend du complexe promoteur d’anaphase/cyclosome (APC/C). En soutien à l’idée que Stau1 soit une cible de cette ubiquitine ligase de type E3, nous avons de plus démontré que Stau1 est ubiquitiné et dégradé par le protéasome. Ce contrôle des niveaux de Stau1 semble important puisque la surexpression de la protéine retarde la sortie de mitose et entraîne une diminution importante de la prolifération cellulaire. Par ailleurs, nous avons supposé que les différentes fonctions de Stau1 puissent également être sujettes à une régulation. Compte tenu que les activités de nombreuses protéines liant l’ARN peuvent être contrôlées par des modifications post-traductionnelles telles que la phosphorylation, nous avons voulu tester la possibilité que Stau1 soit phosphorylé. L’immunopurification de Stau1 et son analyse par spectrométrie de masse nous a permis d’identifier trois phosphosites dans la protéine. L’évaluation du rôle de ces événements de phosphorylation à l’aide de mutants phoshomimétiques ou non-phoshorylables a révélé que la modification de Stau1 pourrait compromettre son association à la protéine UPF1. Comme cette interaction est nécessaire pour déstabiliser les transcrits liés par Stau1, nos résultats suggèrent fortement que la fonction de Stau1 dans la dégradation d’ARNm est régulée négativement par sa phosphorylation. Toutes ces données mettent en lumière l’importance des modifications post-traductionnelles telles que l’ubiquitination et la phosphorylation dans la modulation de l’expression et des fonctions de Stau 1. Somme toute, il est vraisemblable que ces mécanismes de contrôle puissent avoir un impact significatif sur le destin des ARNm liés par Stau1, particulièrement dans un contexte de progression dans le cycle cellulaire.
Resumo:
La dystrophie musculaire de Duchenne (DMD) est une maladie très sévère, progressive et sans traitement vraiment efficace. Elle est caractérisée par l’absence fonctionnelle de la dystrophine, une protéine essentielle au maintien des muscles squelettiques. La thérapie génique est actuellement envisagée comme approche thérapeutique pour livrer la dystrophine dans les muscles. Les vecteurs adénoviraux de troisième génération (Helper-dependent adenoviral vector, HD) sont des véhicules de transfert génique très prometteurs pour traiter la DMD. Puisque les gènes adénoviraux ont été enlevés complètement du HD, ils sont peu toxiques, faiblement immunogéniques et ils possèdent un espace cargo suffisant pour transporter l’ADN codant complet de la dystrophine. Bien que le HD puisse fournir la dystrophine de façon thérapeutique chez des souris dystrophiques (mdx), l’expression du gène thérapeutique est progressivement perdue plusieurs mois suivant l’injection intramusculaire. Deux stratégies innovantes furent explorées dans cette thèse dans le but de stabiliser l’expression de la dystrophine. La première stratégie vise à l’intégration de l’ADN du HD dans les chromosomes cellulaires, ce qui pourrait le protéger contre son élimination progressive des muscles. Une intégrase site-spécifique issue du phage ΦC31 a été utilisée pour catalyser l’intégration d’un HD transportant un marqueur de sélection. Dans les cellules humaines et les myoblastes murins, l’activité de l’intégrase a été évaluée d’après son efficacité d’intégration (après sélection) et sa spécificité (dans les clones résistants). L’efficacité atteint jusqu’à 0,5 % par cellule et jusqu’à 76 % des événements d’intégration ont été réalisés de façon site-spécifique. Bien que des délétions aient été trouvées aux extrémités du vecteur, 70 % des clones analysés montraient une seule copie du vecteur intégré (le nombre attendu). Seulement une petite augmentation du nombre de brisures double-brin a été mesurée dans les myoblastes exprimant l’intégrase. En conclusion, l’intégration du HD est relativement efficace, spécifique et sécuritaire. Cette méthode est très prometteuse, car la dystrophine peut être livrée dans le muscle avec l’aide du HD et l’intégration de l’ADN du HD pourrait stabiliser son expression in vivo. La deuxième stratégie implique l’utilisation d’un nouveau promoteur musculospécifique (ΔUSEx3) pour réduire la toxicité induite liée à une expression trop étendue de la dystrophine. Dans cette étude, nous avons investigué l’effet du contexte viral sur l’activité du promoteur. Un HD et un vecteur lentiviral (LV) ont été construits avec le promoteur ΔUSEx3 pour contrôler l’expression d’un gène rapporteur. Les résultats démontrent que ΔUSEx3 confère une expression puissante, musculospécifique et stable (via le LV) in vitro. L’injection intramusculaire du HD a conduit à une expression puissante du transgène. Ces résultats contrastent avec ceux du LV, car après l’injection de ce dernier, l’expression était faible. La livraison du HD dans le muscle, mais aussi dans plusieurs organes démontre la musculospécificité de ΔUSEx3. Par conséquent, le contexte du vecteur et l’environnement musculaire modulent tous les deux l’activité de ΔUSEx3. Bien que ΔUSEx3 soit musculospécifique, d’autres études sont requises pour déterminer si le promoteur peut stabiliser l’expression de la dystrophine in vivo.
Resumo:
Les papillomavirus sont de petits virus à ADN double brin qui infectent les cellules de l’épithélium de la peau et des muqueuses d’une variété de vertébrés causant des lésions bénignes telles des verrues. Certains de ces virus sont également associés au développement de lésions malignes, notamment le cancer du col utérin. La protéine régulatrice E2 des papillomavirus est impliquée dans diverses fonctions contribuant à l’établissement de l’infection par ces virus. Entre autre, E2 régule la transcription des gènes viraux, participe à l’initiation de la réplication de l’ADN viral en s’associant à l’hélicase virale E1 et est responsable du maintien et de la ségrégation de l’épisome viral au cours de la division cellulaire. Toutes ces activités sont attribuables à la capacité de E2 à s’associer au génome viral et à interagir avec des protéines virales et cellulaires. De plus, ces fonctions sont elles-mêmes régulées par des modifications post-traductionnelles de la protéine E2. Plusieurs études ont été réalisées afin de découvrir les mécanismes de régulation des fonctions de E2 mais le rôle exact des différents domaines de E2 dans ces contrôles reste à être défini. En premier lieu, nous nous sommes intéressés à l’interaction entre E2 et Brd4(L) qui avait été définie comme étant essentielle à la ségrégation de l’épisome. Plusieurs caractéristiques associées à la protéine Brd4(L) telles que sa capacité à lier les lysines acétylées des histones, son interaction avec le complexe Mediator et sa participation à l’activation de la transcription en formant un complexe avec pTEFb, nous ont permis d’émettre l’hypothèse que l’interaction E2-Brd4(L) est nécessaire à l’activité transcriptionnelle de E2. Nous avons démontré que la protéine Brd4(L) interagit avec le domaine de transactivation de E2 de divers types de papillomavirus. De plus, cette interaction implique les résidus de E2 essentiels à son activité transcriptionnelle. Ainsi, ces résultats proposent que l’association E2-Brd4(L) serve à la régulation de la transcription des gènes viraux. Dans un second temps, nos recherches se sont concentrées sur l’existence d’une interface de dimérisation au sein du domaine de transactivation de E2 et de son implication dans les activités transcriptionnelles et réplicatives de la protéine. Nos études ont aussi mis en évidence que l’intégrité de la structure de ce domaine contribue au bon fonctionnement de la réplication du génome viral. Cette découverte suggère que la dimérisation de E2 peut réguler l’initiation de la réplication et propose l’existence d’un niveau de régulation additionnel impliquant l’état de la structure quaternaire de la protéine E2 et une modulation de l’interaction entre E1 et E2 à cette étape du cycle viral. Finalement, l’étude de l’instabilité de la protéine E2 nous a permis de définir une région importante dans le domaine flexible de la protéine, nécessaire à sa dégradation par le protéasome. De plus, la présence de résidus conservés localisés dans ce domaine, sont associés à la dégradation et portent la signature d’un signal de localisation nucléaire de type PY-NLS, suggérant que la stabilité de la protéine E2 est régulée par sa localisation au sein de la cellule. Ces études démontrent l’existence de nouvelles stratégies de régulation des activités transcriptionnelle et réplicative de la protéine E2 des papillomavirus. La compréhension de ces mécanismes nous permet de mieux cerner les étapes favorisant l’établissement et la progression du cycle viral et d’identifier de nouvelles cibles thérapeutiques contre les infections aux papillomavirus.
Resumo:
Le virus de l'hépatite C (VHC) touche 3% de la population mondiale et environ 30% des patients chroniquement infectés développeront une fibrose hépatique. Son génome est un ARN simple brin de polarité positive qui possède un cadre ouvert de lecture flanqué de deux régions non traduites hautement conservées. Différents facteurs peuvent influencer le cycle de réplication du VHC. Deux d’entre eux ont été étudiés dans cette thèse. Tout d'abord, nous nous sommes intéressés à l'effet des structures secondaires et tertiaires du génome sur la réplication du VHC. Les extrémités 5' et 3' du génome contiennent des structures ARN qui régulent la traduction et la réplication du VHC. Le 3'UTR est un élément structural très important pour la réplication virale. Cette région est constituée d’une région variable, d’une séquence poly(U/C) et d’un domaine hautement conservé appelé région X. Des études in vitro ont montré que le 3'UTR possède plusieurs structures ARN double brin. Cependant, les structures ARN telles qu'elles existent dans le 3'UTR dans un contexte de génome entier et dans des conditions biologiques étaient inconnues. Pour élucider cette question, nous avons développé une méthode in situ pour localiser les régions ARN simple brin et double brin dans le 3'UTR du génome du VHC. Comme prédit par les études antérieures, nous avons observé qu’in situ la région X du 3’UTR du génome présente des éléments ARN double brin. Étonnamment, lorsque la séquence poly (U/UC) est dans un contexte de génome entier, cette région forme une structure ARN double brin avec une séquence située en dehors du 3'UTR, suggérant une interaction ARN-ARN distale. Certaines études ont démontré que des structures ARN présentes aux extrémités 5’ et 3' du génome du VHC régulent à la fois la traduction et la réplication du VHC. Cela suggère qu'il y aurait une interaction entre les extrémités du génome qui permettrait de moduler ces deux processus. Dans ce contexte, nous avons démontré l'existence d'une interaction distale ARN-ARN, impliquant le domaine II du 5'UTR et la séquence codante de NS5B du génome du VHC. En outre, nous avons démontré que cette interaction joue un rôle dans la réplication de l'ARN viral. Parallèlement, nous avons étudié l'impact d'une molécule immuno-modulatrice sur la réplication du VHC. La fibrose hépatique est une manifestation majeure de l’infection par le VHC. Hors, il a été montré qu'une molécule immuno-modulatrice appelée thalidomide atténuait la fibrose chez les patients infectés par le VHC. Cependant, son impact sur la réplication virale était inconnu. Ainsi, nous avons étudié l'effet de cette molécule sur la réplication du VHC in vitro et nous avons démontré que la thalidomide active la réplication du virus en inhibant la voie de signalisation de NF-kB. Ces résultats soulignent l’importance de la voie de signalisation NF-kB dans le contrôle de la réplication du VHC, et sont à prendre en considération dans l’établissement d’un traitement contre la fibrose hépatique.
Resumo:
Le virus du papillome humain (VPH) est l’agent étiologique du cancer du col utérin, ainsi que d’autre néoplasies anogénitales et des voies aérodigestives supérieures. La réplication de son génome d’ADN double brin est assurée par les protéines virales E1 et E2, de concert avec la machinerie cellulaire de réplication. E1 assure le déroulement de l’ADN en aval de la fourche de réplication, grâce à son activité hélicase, et orchestre la duplication du génome viral. Nos travaux antérieurs ont démontré que le domaine N-terminal de E1 contient un motif de liaison à la protéine cellulaire p80/UAF1 qui est hautement conservé chez tous les VPH anogénitaux. L’intégrité de ce motif est essentielle au maintien de l’épisome viral. Les travaux présentés dans cette thèse ont d’abord déterminé que le motif de liaison à UAF1 n’est pas requis pour l’assemblage du pré-réplisome viral, mais important pour la réplication subséquente de l’ADN du VPH. Nous avons constaté qu’en présence de E1 et E2, UAF1 est relocalisé dans des foyers nucléaires typiques de sites de réplication du virus et qu’en outre, UAF1 s’associe physiquement à l’origine de réplication du VPH. Nous avons aussi déterminé que l’inhibition du recrutement de UAF1 par la surexpression d’un peptide dérivé de E1 (N40) contenant le motif de liaison à UAF1 réduit la réplication de l’ADN viral. Cette observation soutient le modèle selon lequel UAF1 est relocalisé par E1 au réplisome pour promouvoir la réplication de l’ADN viral. UAF1 est une protéine à domaine WD40 n’encodant aucune activité enzymatique et présumée exploiter des interactions protéine-protéine pour accomplir sa fonction. Nous avons donc investigué les protéines associées à UAF1 dans des cellules du col utérin et avons détecté des interactions avec les enzymes de déubiquitination USP1, USP12 et USP46, ainsi qu’avec la phosphatase PHLPP1. Nous avons établi que E1 forme un complexe ternaire avec UAF1 et n’importe laquelle des USP associés : USP1, USP12 ou USP46. Ces USP sont relocalisés au noyau par E1 et s’associent à l’ADN viral. De plus, l’activité enzymatique des USP est essentielle à la réplication optimale du génome viral. Au contraire, PHLPP1 ne forme pas de complexe avec E1, puisque leurs interactions respectives avec UAF1 sont mutuellement exclusives. PHLPP1 contient un peptide de liaison à UAF1 homologue à celui de E1. Ce peptide dérivé de PHLPP1 (P1) interagit avec le complexe UAF1-USP et, similairement au peptide N40, antagonise l’interaction E1-UAF1. Incidemment, la surexpression du peptide P1 inhibe la réplication de l’ADN viral. La génération de protéines chimériques entre P1 et des variants de E1 (E1Δ) défectifs pour l’interaction avec UAF1 restaure la capacité de E1Δ à interagir avec UAF1 et USP46, ainsi qu’à relocaliser UAF1 dans les foyers nucléaires contenant E1 et E2. Ce recrutement artificiel de UAF1 et des USP promeut la réplication de l’ADN viral, un phénotype dépendant de l’activité déubiquitinase du complexe. Globalement, nos travaux suggèrent que la protéine E1 du VPH interagit avec UAF1 afin de recruter au réplisome un complexe de déubiquitination dont l’activité est importante pour la réplication de l’ADN viral.
Resumo:
Les différents mécanismes de régulation posttranscriptionnelle de l’expression des gènes sont de plus en plus reconnus comme des processus essentiels dans divers phénomènes physiologiques importants, comme la prolifération cellulaire et la réponse aux dommages à l’ADN. Deux des protéines impliquées dans ce type de régulation sont Staufen1 (Stau1) et Staufen2 (Stau2). Elles sont des protéines de liaison à l’ARN double brin qui contribuent au transport de l’ARN messager (ARNm), au contrôle de la traduction, à l’épissage alternatif et sont responsables de la dégradation de certains ARNm spécifiques. Les protéines Staufen peuvent en effet s’associer à des ARNm bien précis, d’autant plus que, majoritairement, Stau1 et Stau2 ne se retrouvent pas en complexe avec les mêmes cibles. De nombreuses évidences récentes montrent l’implication de divers mécanismes de régulation posttranscriptionnelle dans la réponse aux dommages à l’ADN, plusieurs protéines de liaison à l’ARN y participant d’ailleurs. De façon importante, cette réponse dicte un ou plusieurs destin(s) à la cellule qui doit réagir à la suite de dommages à l’intégrité de son ADN: réparation de l’ADN, arrêt de la prolifération cellulaire, apoptose. Nous avons donc fait l’hypothèse que l’expression de Stau1 et/ou de Stau2 pourrait être affectée en réponse à un stress génotoxique, ce qui pourrait avoir comme conséquence de moduler l’expression et/ou la stabilité de leurs ARNm cibles. De même, notre laboratoire a récemment observé que l’expression de Stau1 varie pendant le cycle cellulaire, celle-ci étant plus élevée jusqu’au début de la mitose (prométaphase), puis elle diminue alors que les cellules complètent leur division. Par conséquent, nous avons fait l’hypothèse que Stau1 pourrait lier des ARNm de façon différentielle dans des cellules bloquées en prométaphase et dans des cellules asynchrones. D’un côté, en employant la camptothécine (CPT), une drogue causant des dommages à l’ADN, pour traiter des cellules de la lignée de cancer colorectal HCT116, nous avons observé que seule l’expression de Stau2 est réduite de façon considérable, tant au niveau de la protéine que de l’ARNm. L’utilisation d’autres agents cytotoxiques a permis de confirmer cette observation initiale. De plus, nous avons constaté que l’expression de Stau2 est touchée même dans des conditions n’engendrant pas une réponse apoptotique, ce qui suggère que cette déplétion de Stau2 est possiblement importante pour la mise en place d’une réponse appropriée aux dommages à l’ADN. D’ailleurs, la surexpression de Stau2 conjointement avec le traitement à la CPT entraîne un retard dans l’induction de l’apoptose dans les cellules HCT116. Nous avons aussi montré que la diminution de l’expression de Stau2 est due à une régulation de sa transcription en réponse au stress génotoxique, ce pourquoi une région minimale du promoteur putatif de Stau2 est nécessaire. Également, nous avons identifié que le facteur de transcription E2F1, couramment impliqué dans la réponse aux dommages à l’ADN, peut contrôler l’expression de Stau2. Ainsi, E2F1 permet une augmentation de l’expression de Stau2 dans des cellules non traitées, mais cette hausse est abolie dans des cellules traitées à la CPT, ce qui suggère que la CPT pourrait agir en inhibant l’activation transcriptionnelle de Stau2 par E2F1. Enfin, nous avons observé que certains ARNm associés à Stau2, et codant pour des protéines impliquées dans la réponse aux dommages à l’ADN et l’apoptose, sont exprimés différemment dans des cellules traitées à la CPT et des cellules non traitées. D’un autre côté, nous avons identifié les ARNm associés à Stau1 lors de la prométaphase, alors que l’expression de Stau1 est à son niveau le plus élevé pendant le cycle cellulaire, grâce à une étude à grande échelle de micropuces d’ADN dans des cellules HEK293T. Nous avons par la suite confirmé l’association entre Stau1 et certains ARNm d’intérêts, donc codant pour des protéines impliquées dans la régulation de la prolifération cellulaire et/ou le déroulement de la mitose. Une comparaison de la liaison de ces ARNm à Stau1 dans des cellules bloquées en prométaphase par rapport à des cellules asynchrones nous a permis de constater une association préférentielle dans les cellules en prométaphase. Ceci suggère une augmentation potentielle de la régulation de ces ARNm par Stau1 à ce moment du cycle cellulaire. Les données présentées dans cette thèse indiquent vraisemblablement que la régulation posttranscriptionnelle de l’expression génique contrôlée par les protéines Staufen se fait en partie grâce à la modulation de l’expression de Stau1 et de Stau2 en fonction des conditions cellulaires. Nous envisageons alors que cette variation de l’expression des protéines Staufen ait des conséquences sur des sous-ensembles d’ARNm auxquels elles sont liées et que de cette façon, elles jouent un rôle pour réguler des processus physiologiques essentiels comme la réponse aux dommages à l’ADN et la progression dans le cycle cellulaire.
Resumo:
La déubiquitinase BAP1 (« BRCA1-Associated Protein1 ») a initialement été isolée pour sa capacité de promouvoir la fonction suppressive de tumeurs de BRCA1. BAP1 est muté de manière homozygote dans plusieurs cancers (tel que le cancer du rein, de la peau, de l’oeil et du sein) suggérant fortement que cette déubiquitinase est un suppresseur de tumeurs. Effectivement, la surexpression de BAP1 réduit la prolifération cellulaire et la croissance tumorale dans des modèles de xénogreffe de souris. Toutefois, la fonction biologique et le mécanisme d’action de cette déubiquitinase restent encore marginalement connus. Ainsi, les objectifs de cette thèse sont de caractériser la fonction biologique de BAP1 et de révéler les bases moléculaires de sa fonction suppressive de tumeurs. Pour déterminer la fonction biologique de BAP1, nous avons immuno-purifié et identifié les protéines associées à BAP1, qui s’avèrent être principalement des facteurs et co-facteurs de transcription. Ensuite, nous avons démontré que BAP1 est un régulateur de la transcription. Parallèlement, un autre groupe a montré que BAP1 chez la drosophile, Calypso, régule l’ubiquitination de H2A et la transcription génique. D’autre part, nos résultats d’analyse d’expression génique globale suggèrent que BAP1 jouerait un rôle important dans la réponse aux dommages à l’ADN. Effectivement, des expériences de gain et de perte de fonction (méthode de l’ARNi, modèle de cellules KO en BAP1 et de cellules déficientes en BAP1 re-exprimant BAP1) ont révélé que cette déubiquitinase régule la réponse aux bris double brin d’ADN par la recombinaison homologue. Nos résultats suggèrent que BAP1 exerce sa fonction suppressive de tumeurs en contrôlant la réparation sans erreur de l’ADN via la recombinaison homologue. En cas d’inactivation de BAP1, les cellules deviendront plus dépendantes du mécanisme de réparation par jonction d'extrémités non-homologues, qui est potentiellement mutagénique causant ainsi l’instabilité génomique. D’autres études seront nécessaires afin de déterminer le rôle exact de BAP1 dans la transcription et de comprendre comment la dérégulation de l’ubiquitination de H2A contribue au développement du cancer. Définir les mécanismes de suppression tumorale est de grand intérêt, non seulement pour comprendre la carcinogénèse mais également pour le développement de nouvelles thérapies contre cette maladie.
Resumo:
Chez les plantes, le génome plastidique est continuellement exposé à divers stress mutagènes, tels l’oxydation des bases et le blocage des fourches de réplication. Étonnamment, malgré ces menaces, le génome du plastide est reconnu pour être très stable, sa stabilité dépassant même celle du génome nucléaire. Néanmoins, les mécanismes de réparation de l’ADN et du maintien de la stabilité du génome plastidique sont encore peu connus. Afin de mieux comprendre ces processus, nous avons développé une approche, basée sur l’emploi de la ciprofloxacine, qui nous permet d’induire des bris d’ADN double-brins (DSBs) spécifiquement dans le génome des organelles. En criblant, à l’aide de ce composé, une collection de mutants d’Arabidopsis thaliana déficients pour des protéines du nucléoïde du plastide, nous avons identifié 16 gènes vraisemblablement impliqués dans le maintien de la stabilité génomique de cette organelle. Parmi ces gènes, ceux de la famille Whirly jouent un rôle primordial dans la protection du génome plastidique face aux réarrangements dépendants de séquences de microhomologie. Deux autres familles de gènes codant pour des protéines plastidiques, soit celle des polymérases de types-I et celle des recombinases, semblent davantage impliquées dans les mécanismes conservateurs de réparation des DSBs. Les relations épistatiques entre ces gènes et ceux des Whirly ont permis de définir les bases moléculaires des mécanismes de la réparation dépendante de microhomologies (MHMR) dans le plastide. Nous proposons également que ce type de mécanismes servirait en quelque sorte de roue de secours pour les mécanismes conservateurs de réparation. Finalement, un criblage non-biaisé, utilisant une collection de plus de 50,000 lignées mutantes d’Arabidopsis, a été réalisé. Ce criblage a permis d’établir un lien entre la stabilité génomique et le métabolisme des espèces réactives oxygénées (ROS). En effet, la plupart des gènes identifiés lors de ce criblage sont impliqués dans la photosynthèse et la détoxification des ROS. Globalement, notre étude a permis d’élargir notre compréhension des mécanismes du maintien de la stabilité génomique dans le plastide et de mieux comprendre l’importance de ces processus.
Resumo:
L’ubiquitination est une modification post-traductionnelle qui joue un rôle majeur dans la régulation d’une multitude de processus cellulaires. Dans cette thèse, je discuterai de la caractérisation de deux protéines, BRCA1 et BAP1, soit deux suppresseurs de tumeurs fonctionnellement reliés. BRCA1, une ubiquitine ligase qui catalyse la liaison de l’ubiquitine à une protéine cible, est mutée dans les cancers du sein et de l'ovaire. Il est bien établi que cette protéine aide à maintenir la stabilité génomique suite à un bris double brin de l’ADN (BDB), et ce, à l’aide d’un mécanisme de réparation bien caractérisé appelé recombinaison homologue. Cependant, les mécanismes de régulation de BRCA1 suite à des stresses génotoxiques n’impliquant pas directement un BDB ne sont pas pleinement élucidés. Nous avons démontré que BRCA1 est régulée par dégradation protéasomale suite à une exposition des cellules à deux agents génotoxiques reconnus pour ne pas directement générer des BDBs, soit les rayons UV, qui provoquent la distorsion de l’hélice d’ADN, et le méthyle méthanesulfonate (MMS), qui entraîne l’alkylation de l’ADN. La dégradation de BRCA1 est réversible et indépendante des kinases associées à la voie des PI3 kinase, soit ATM, ATR et DNA-PK, protéines qui sont rapidement activées par les dommages à l’ADN. Nous proposons que la dégradation de BRCA1 prévienne son recrutement intempestif, ainsi que celui des facteurs qui lui sont associés, à des sites de dommages d’ADN qui ne sont pas des BDBs, et que cette régulation coordonne la réparation de l’ADN. L’enzyme de déubiquitination BAP1 a initialement été identifiée comme une protéine capable d’interagir avec BRCA1 et de réguler sa fonction. Elle est également connue pour sa capacité à se lier avec les protéines du groupe Polycomb, ASXL1 et ASXL2. Cependant, l’importance de ces interactions n’a toujours pas été établie. Nous avons démontré que BAP1 forme deux complexes protéiques mutuellement exclusifs avec ASXL1 et ASXL2. Ces interactions sont critiques pour la liaison de BAP1 à l’ubiquitine ainsi que pour la stimulation de son activité enzymatique envers l’histone H2A. Nous avons également identifié des mutations de BAP1 dérivées de cancers qui empêchent à la fois son interaction avec ASXL1 et AXSL2, et son activité de déubiquitinase, ce qui fournit un lien mécanistique direct entre la déubiquitination de H2A et la tumorigenèse. Élucider les mécanismes de régulation de BRCA1 et BAP1 menera à une meilleure compréhension de leurs rôles de suppresseurs de tumeurs, permettant ainsi d’établir de nouvelles stratégies de diagnostic et traitement du cancer.
Resumo:
Un dérèglement du cycle cellulaire peut causer le cancer. Lors de la cytocinèse un anneau contractile d’actine et de myosine se forme, se contracte, et donne un anneau du midbody qui mène à l’abscision. Le processus de cytocinèse est sous le contrôle de protéines telles que la GTPase Rho qui active la cytocinèse et les cyclines-Cdks qui l'inhibent. La Drosophile possède 3 cyclines mitotiques CycA/ CycB/ CycB3 qui sont successivement dégradées en fin de mitose et permettent l'initiation de la cytocinèse. La dernière étape d’abscission est un phénomène qui reste encore peu connu. Les protéines Vps4 et CHMP4C liées à ANCHR vont, sous la dépendance de la kinase Aurora B, promouvoir l’abscision mais, suite à quelques études récentes, il semble y avoir une implication de la cycline B. Ici, le but était de tester l’implication de cette cycline dans les processus de cytocinèse et d’abscision, elle a été menée par microscopie à haute résolution en temps réel avec des cellules S2 de l’organisme Drosophila melanogaster par le suivi de protéines recombinantes fluorescentes. L’étude a été divisée en deux axes : gain et perte de fonction par l’intermédiaire respectivement de la protéine Cycline B recombinante stable, non dégradable (CycBstable-GFP) et l’inhibition par l’utilisation d’ARN double brin (ARNdb) sur l’endogène. La CycBstable-GFP a perturbé la cytocinèse en induisant plusieurs anneaux contractiles et midbodies. En revanche la réduction de l’expression de CycB n'a pas eu d’effet observable, et elle ne semble pas avoir d’action sur l’abscission malgré le recrutement de CycB-GFP au midbody tardif. En revanche la protéine Cdk1 semble avoir un rôle dans l'abscision puisque sa réduction d’expression a induit un délai. Elle a donc une implication potentielle sur la cytocinèse.
Resumo:
L’ubiquitination est une modification post-traductionnelle qui joue un rôle majeur dans la régulation d’une multitude de processus cellulaires. Dans cette thèse, je discuterai de la caractérisation de deux protéines, BRCA1 et BAP1, soit deux suppresseurs de tumeurs fonctionnellement reliés. BRCA1, une ubiquitine ligase qui catalyse la liaison de l’ubiquitine à une protéine cible, est mutée dans les cancers du sein et de l'ovaire. Il est bien établi que cette protéine aide à maintenir la stabilité génomique suite à un bris double brin de l’ADN (BDB), et ce, à l’aide d’un mécanisme de réparation bien caractérisé appelé recombinaison homologue. Cependant, les mécanismes de régulation de BRCA1 suite à des stresses génotoxiques n’impliquant pas directement un BDB ne sont pas pleinement élucidés. Nous avons démontré que BRCA1 est régulée par dégradation protéasomale suite à une exposition des cellules à deux agents génotoxiques reconnus pour ne pas directement générer des BDBs, soit les rayons UV, qui provoquent la distorsion de l’hélice d’ADN, et le méthyle méthanesulfonate (MMS), qui entraîne l’alkylation de l’ADN. La dégradation de BRCA1 est réversible et indépendante des kinases associées à la voie des PI3 kinase, soit ATM, ATR et DNA-PK, protéines qui sont rapidement activées par les dommages à l’ADN. Nous proposons que la dégradation de BRCA1 prévienne son recrutement intempestif, ainsi que celui des facteurs qui lui sont associés, à des sites de dommages d’ADN qui ne sont pas des BDBs, et que cette régulation coordonne la réparation de l’ADN. L’enzyme de déubiquitination BAP1 a initialement été identifiée comme une protéine capable d’interagir avec BRCA1 et de réguler sa fonction. Elle est également connue pour sa capacité à se lier avec les protéines du groupe Polycomb, ASXL1 et ASXL2. Cependant, l’importance de ces interactions n’a toujours pas été établie. Nous avons démontré que BAP1 forme deux complexes protéiques mutuellement exclusifs avec ASXL1 et ASXL2. Ces interactions sont critiques pour la liaison de BAP1 à l’ubiquitine ainsi que pour la stimulation de son activité enzymatique envers l’histone H2A. Nous avons également identifié des mutations de BAP1 dérivées de cancers qui empêchent à la fois son interaction avec ASXL1 et AXSL2, et son activité de déubiquitinase, ce qui fournit un lien mécanistique direct entre la déubiquitination de H2A et la tumorigenèse. Élucider les mécanismes de régulation de BRCA1 et BAP1 menera à une meilleure compréhension de leurs rôles de suppresseurs de tumeurs, permettant ainsi d’établir de nouvelles stratégies de diagnostic et traitement du cancer.
Resumo:
Un dérèglement du cycle cellulaire peut causer le cancer. Lors de la cytocinèse un anneau contractile d’actine et de myosine se forme, se contracte, et donne un anneau du midbody qui mène à l’abscision. Le processus de cytocinèse est sous le contrôle de protéines telles que la GTPase Rho qui active la cytocinèse et les cyclines-Cdks qui l'inhibent. La Drosophile possède 3 cyclines mitotiques CycA/ CycB/ CycB3 qui sont successivement dégradées en fin de mitose et permettent l'initiation de la cytocinèse. La dernière étape d’abscission est un phénomène qui reste encore peu connu. Les protéines Vps4 et CHMP4C liées à ANCHR vont, sous la dépendance de la kinase Aurora B, promouvoir l’abscision mais, suite à quelques études récentes, il semble y avoir une implication de la cycline B. Ici, le but était de tester l’implication de cette cycline dans les processus de cytocinèse et d’abscision, elle a été menée par microscopie à haute résolution en temps réel avec des cellules S2 de l’organisme Drosophila melanogaster par le suivi de protéines recombinantes fluorescentes. L’étude a été divisée en deux axes : gain et perte de fonction par l’intermédiaire respectivement de la protéine Cycline B recombinante stable, non dégradable (CycBstable-GFP) et l’inhibition par l’utilisation d’ARN double brin (ARNdb) sur l’endogène. La CycBstable-GFP a perturbé la cytocinèse en induisant plusieurs anneaux contractiles et midbodies. En revanche la réduction de l’expression de CycB n'a pas eu d’effet observable, et elle ne semble pas avoir d’action sur l’abscission malgré le recrutement de CycB-GFP au midbody tardif. En revanche la protéine Cdk1 semble avoir un rôle dans l'abscision puisque sa réduction d’expression a induit un délai. Elle a donc une implication potentielle sur la cytocinèse.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.