234 resultados para Cassiterite
Resumo:
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondonia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondonia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Barbara deposit (Rondonia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sri (+/-W, +/-Ta, +/-Nb), and base-metal suite (Zn-Cu-Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0-19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245-450 degreesC, and (2) aqueous solutions with low CO2, low to moderate salinity (0-14 wt.% NaCl eq.), which homogenize between 100 and 340 T. In the Santa Barbara deposit, the early inclusions are represented by (1) low-salinity (5-12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 T, and (2) low-salinity (0-3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320380 degreesC. Cassiterite, wolframite, columbite-tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0-6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100-260 degreesC) and characterizes the sulfide fluorite-sericite association in the Correas deposit. The late fluid in the Santa Barbara deposit has lower salinity (0-3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240-450 degreesC, and 1,0-2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (delta(18)O quartz from 9.9parts per thousand to 10.9parts per thousand, deltaDH(2)O from 4.13parts per thousand to 6.95parts per thousand) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 degreesC. In the Santa Barbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 degreesC, respectively), and that for the cassiterite-quartz-veins is 415 degreesC. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (delta(18)O(qtz-H2O)=5.5-6.1parts per thousand) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (delta(18)O(mica-H2O)=33-9.8parts per thousand) suggest mixing with meteoric water. Late muscovite veins (delta(18)O(qtz-H2O)=-6.4parts per thousand) and late quartz (delta(18)O(mica-H2O)=-3.8parts per thousand) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor coluChange in the redox conditions related to mixing-of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Structural morphological studies in pure and Ce-doped tin dioxide nanoparticles with high stability against particle growth were performed in samples, obtained using the polymeric precursor method and prepared at different annealing temperatures. A Ce-rich surface layer was used to control the particle size and stabilize SnO2 against particle growth. The formation of this segregated layer can contribute to a decreased surface energy, acting in the driving force, or reducing the surface mobility. Only the cassiterite SnO2 phase was observed below 1000 degreesC and a secondary phase (CeO2) was observed for the Ce-doped SnO2 at temperatures higher than 1000 degreesC, when de-mixing process occurs. The evolution of crystallite size, microstrain and morphology of the nanoparticles with annealing temperatures was investigated by X-ray diffraction (XRD), associated to Rietveld refinements, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
SnO2-based materials are used as sensors, catalysts and in electro-optical devices. This work aims to synthesize and characterize the SnO2/Sb2O3-based inorganic pigments, obtained by the polymeric precursor method, also known as Pechini method (based on the metallic citrate polymerization by means of ethylene glycol). The precursors were characterized by thermogravimetry (TG) and differential thermal analysis (DTA). After characterization, the precursors were heat-treated at different temperatures and characterized by X-ray diffraction. According to the TG/DTA curves basically two-step mass loss process was observed: the first one is related to the dehydration of the system; and the second one is representative to the combustion of the organic matter. Increase of the heat treatment temperature from 500 to 600 degrees C and 700 degrees C resulted higher crystallinity of the formed product.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Perovskite type oxides have been intensively studied due to their interesting optical, electrical, and catalytic properties. Among perovskites the alkaline earth stannates stand out, being strontium stannates (SrSnO3) the most important material in ceramic technology among them due to their wide application as dielectric component. SrSnO3 has also been applied as stable capacitor and humidity sensor. In the present work, SrSnO3:Cu was synthesized by polymeric precursor method and heat treated at 700, 800, and 900 A degrees C for 4 h. After that, the material was characterized by thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared spectroscopy, and UV-vis spectroscopy. Results indicated three thermal decomposition steps and confirmed the presence of strontium carbonate and Cu2+ reduction to Cu+ at higher dopant amounts. XRD patterns indicated that the perovskite crystallization started at 700 A degrees C with strontiatite (SrCO3) and cassiterite (SnO2) as intermediate phases, disappearing at higher temperatures. The amount of secondary phase was reduced with the increase in the Cu concentration.
Resumo:
By simple room temperature broad band time-resolved spectroscopy it was possible to discriminate different Eu3+ spectra in SnO2 monolithic gels obtained by a sol-gel synthetic route. Nanocrystalline domains of the cassiterite-like SnO2:Eu could be easily identified in the transparent medium. From X-ray diffraction profiles a mean particle radius of 2.2 nm was estimated. © 1992.
Resumo:
In order to determine structural changes during drying of inorganic gels, the local and long-range order structure of SnO2-x(OH)2x xerogels resulting from drying hydrogels with different concentrations of electrolyte (Cl- and NH+ 4) have been measured by extended X-ray absorption fine structure (EXAFS), X-ray diffraction (XRD) and N2 adsorption techniques. EXAFS measurements performed at the Sn K edge on the hydrogels and xerogels show the existence of microcrystallites with the cassiterite structure. Two drying modes have been used: freeze drying and drying by evaporation at 45°C. It is shown that the microcrystallite size determined by XRD and EXAFS techniques on the drying mode and on the electrolyte concentrations. The microcrystallite size measured on the freeze dried xerogels is similar to that of their parent hydrogels, whatever the concentration of electrolyte; however, during drying by evaporation, a preferential growth of microcrystallites along the c-axis of the cassiterite structure is observed. The size of these crystallites is enhanced with a decrease of the electrolyte concentration. Specific surface areas calculated by the Brunauer-Emmett-Teller method indicate that this preferential growth is related to the improvement of the network connectivity. The comparison of both drying processes indicates that crystallization and polycondensation are independent phenomena. © 1995 Elsevier Science B.V. All rights reserved.
Resumo:
The evolution of Eu3+ doped SnO2 xerogels to the cassiterite structure observed during sintering was studied by means of Eu3+ spectroscopy, XRD and EXAFS at the Sn K-edge. Eu3+ ions adsorbed at the surface of colloidal particles present a broad distribution of sites, typical of oxide glasses. With sintering at 300°C, this distribution is still broadened. Crystallization is clearly observed by the three techniques with increasing sintering temperature. It is found that the addition of Eu3+ limits the crystallite growth.
Resumo:
The formation of an ordered (crystalline) phase during isothermal sintering of SnO2 monolithic xerogels, at 200, 250, 300, 400, 500, 600 and 700°C, has been analyzed by the combined use of EXAFS and XRD techniques. For the desiccated gel (110°C), EXAFS results show the formation of small microcrystallites with the incipient cassiterite structure. Between 110 and 250°C, the dehydratation reaction leads to an amorphization evidenced by a decrease of the long and short range crystallographic order. It is due to fissure formation in the xerogel network. For higher temperatures, a continuous coagulation of the crystallites occurs, leading to grain growth. Grain and pore growth obeys the same kinetic relation, so that the microstructure grows by simple enlargement while its morphology is static.
Resumo:
Non-linear electrical properties of SnO2-based ceramics were investigated as a function of powder agglomeration condition and as a function of dopant addition. All doped powders presented a single phase, cassiterite, as evidenced by X-ray diffraction analysis. The effect of milling was quite evident, with non-milled powder showing higher agglomerated particle size than milled powder. Cr addition seemed to increase the non-linear coefficient. Cu and Mn rendered dense ceramics, but α values for systems with Mn were higher than for systems with Cu.
Resumo:
According to the environmental legislation enforced in Brazil and the process of marketing globalization, the commitment of the nations to the preservation of the environment is intensified. By reason of nature's negative responses to its intensive use, awareness then appears from enterprises and agencies about how the anthropic action over the environment needs to be minimized, becoming a challenge: development and sustainability. In this context, the present work made use of the Mechanical tillage of the soil, as a technique to apply, in a large scale, the strategies and methods to recover mined areas that were researched and developed experimentally by researchers on a theme project about the recovering of degraded areas. This work was conducted in the Amazon ecosystem, inside the Jamari National Forest - Rondônia (FLONA do Jamari), in deactivated cassiterite mines. The objectives of this work were to: Develop a computational program capable of managing a database and assist in the selection of machines and preparation methods to execute the operations of topographical reconstitution and tillage of surfaces in areas degraded by the mineral exploitation of cassiterite. Use the program that was developed in the planning of costs and operational development, for the operations required in the strategies for recovering the areas. Analyze the vegetable productivity in the mobilized areas and the quality of the superficial mobilization, making use of indicators and tillage methods. Evaluate, through biological indicators, the efficiency of the recovery strategies and techniques that were mechanized and applied on the location. The results showed that the developed computational program (SGMAD) served the methodological purposes (the analysis of costs and operational capacity) established for the planning and the selection of the tillage machines and methods in the areas of mineral exploitation of cassiterite. The applied methods and quality of the superficial mobilization were significant to the development of leguminous plants in the areas. The use of biological indicators (microbial biomass and enzymatic activity) in the evaluation of the adopted techniques and strategies revealed that the planting of leguminous plants and their posterior incorporation have been promoting gradually positive alterations in some of the analyzed soil/substract parameters. © 2010 WIT Press.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
No Brasil, na Região Amazônica, o minério de estanho (cassiterita) é obtido por dragagem em depósitos aluvionares, extração de minério primário e lavra de pequeno porte. O concentrado de estanho obtido (Sn02, contendo 60% de estanho), sendo transformado, via redução, nos fornos elétricos, transformando-o em lingotes de estanho. O metal é primeiramente usado para a produção de folhas de flandres – chapas de aço recobertas com estanho e utilizadas para fabricação de latas para alimentos, bebidas e produtos químicos, bem como na produção de soldas e outras ligas para a indústria em geral (particularmente em segmentos elétricos e eletrônicos). A mina mais importante é a de Pitinga (pureza de 55,3%), localizada a 300 km ao norte de Manaus (AM) e proprietária da Paranapenema. Pitinga dispõe de reservas provadas de columbita-tantalita, criolita e zirconita, contendo terras raras e itrium, cuja viabilidade econômica ainda está sendo estudada. Há inda veios mineralizados no estado de Rondônia, incluindo a mina de Bom Futuro (pureza de 58%), no município de Ariquemes, onde operam os mineradores de pequeno porte. O Brasil é o quinto maior produtor do metal, após Indonésia, China e Peru.
Resumo:
Zircões de granitos das Suítes Jamon (SJ), Serra dos Carajás (SSC) e Velho Guilherme (SVG) foram estudados em MEV por meio de imagens de elétrons retroespalhados e catodoluminescência e análises pontuais por EDS. Granitos e greisens da SVG apresentam zircões dominantemente anédricos, alterados e intensamente corroídos, enriquecidos em Hf e com as mais baixas razões Zr/Hf, as quais nos granitos tendem a decrescer no sentido das fácies mais evoluídas. Zircões da SJ são euédricos a subédricos, zonados e pouco alterados, comparativamente empobrecidos em Hf e com as mais elevadas razões Zr/Hf, indicando potencial reduzido para geração de mineralização estanífera. Zircões dos granitos da SSC são subédricos a anédricos, alterados e corroídos e com conteúdos de Hf e razões Zr/Hf intermediárias a dos zircões das SJ e SVG. Granitos da SVG com mineralizações de Sn, W e Ta apresentam zircões com razões Zr/Hf entre 7 e 22. Conclui-se que razões desta ordem podem ser utilizadas como guia prospectivo de granitos especializados. Por outro lado, zircões de greisens associados ao Granito Cigano da SSC apresentaram razão Zr/Hf média em torno de 23, porém nenhuma cassiterita foi encontrada nessas rochas. Isto indica que estes zircões preservaram sua assinatura magmática original. O estudo desenvolvido permitiu distinguir as três suítes graníticas em termos de composição de zircão, e mostrou a importância da assinatura geoquímica desse mineral, sobretudo da razão Zr/Hf, na identificação de granitos especializados. Análises de zircões por MEV-EDS podem, portanto, ser utilizadas na avaliação preliminar do potencial metalogenético de granitos estaníferos.
Resumo:
Quatro tipos morfológico-texturais de quartzo, informalmente denominados Qz1, Qz2, Qz3 e Qz4, foram identificados nas diferentes fácies do Granito Antônio Vicente, Província Carajás, por meio de imagens de microscopia eletrônica de varredura-catodoluminescência (MEV-CL). Nas rochas menos evoluídas, contendo anfibólio e biotita, dominam cristais anédricos a subédricos bem desenvolvidos, luminescentes e intensamente fraturados (Qz1). Fluidos hidrotermais que percolaram o granito transformaram o quartzo magmático (Qz1) em Qz2 e Qz3 por meio de processos de alteração, dissolução e recristalização, sendo essas transformações muito mais evidentes nas rochas sienograníticas intensamente alteradas. O Qz4 forma cristais médios a grossos, geralmente luminescentes e comparativamente pouco fraturados. Sua ocorrência é restrita às rochas sienograníticas fortemente hidrotermalizadas e aos corpos de greisens, sugerindo o início do processo de greisenização. Nos greisens, dominam cristais de quartzo euédricos médios a grossos, zonados concentricamente e com feições típicas de origem hidrotermal (Qz5). Finos cristais de cassiterita zonada (≤ 100 µm) são comuns e preenchem cavidades nos tipos Qz4 e Qz5. Zircões dominantemente anédricos, corroídos, com os mais elevados conteúdos de Hf e as mais baixas razões Zr/Hf, pertencem às rochas mais evoluídas e alteradas hidrotermalmente e aos corpos de greisens associados, ambos portadores de mineralizações de Sn. Tal fato sugere que a assinatura geoquímica do zircão, em especial a razão Zr/Hf, pode ser utilizada na avaliação preliminar do potencial metalogenético de granitos estaníferos.