1000 resultados para Cardiorespiratory function
Resumo:
BACKGROUND: Brain stem death can elicit a potentially manipulable cardiotoxic proinflammatory cytokine response. We investigated the prevalence of this response, the impact of donor management with tri-iodothyronine (T3) and methylprednisolone (MP) administration, and the relationship of biomarkers to organ function and transplant suitability. METHODS: In a prospective randomized double-blinded factorially designed study of T3 and MP therapy, we measured serum levels of interleukin-1 and -6 (IL-1 and IL-6), tumor necrosis factor-alpha (TNF-alpha), C-reactive protein, and procalcitonin (PCT) levels in 79 potential heart or lung donors. Measurements were performed before and after 4 hr of algorithm-based donor management to optimize cardiorespiratory function and +/-hormone treatment. Donors were assigned to receive T3, MP, both drugs, or placebo. RESULTS: Initial IL-1 was elevated in 16% donors, IL-6 in 100%, TNF-alpha in 28%, CRP in 98%, and PCT in 87%. Overall biomarker concentrations did not change between initial and later measurements and neither T3 nor MP effected any change. Both PCT (P =0.02) and TNF-alpha (P =0.044) levels were higher in donor hearts with marginal hemodynamics at initial assessment. Higher PCT levels were related to worse cardiac index and right and left ventricular ejection fractions and a PCT level more than 2 ng x mL(-1) may attenuate any improvement in cardiac index gained by donor management. No differences were observed between initially marginal and nonmarginal donor lungs. A PCT level less than or equal to 2 ng x mL(-1) but not other biomarkers predicted transplant suitability following management. CONCLUSIONS: There is high prevalence of a proinflammatory environment in the organ donor that is not affected by tri-iodothyronine or MP therapy. High PCT and TNF-alpha levels are associated with donor heart dysfunction. (C) 2009 Lippincott Williams & Wilkins, Inc.
Resumo:
It has been established that Wingate-based high-intensity training (HIT) consisting of 4 to 6 x 30-s all-out sprints interspersed with 4-min recovery is an effective training paradigm. Despite the increased utilisation of Wingate-based HIT to bring about training adaptations, the majority of previous studies have been conducted over a relatively short timeframe (2 to 6 weeks). However, activity during recovery period, intervention duration or sprint length have been overlooked. In study 1, the dose response of recovery intensity on performance during typical Wingate-based HIT (4 x 30-s cycle all-out sprints separated by 4-min recovery) was examined and active recovery (cycling at 20 to 40% of V̇O2peak) has been shown to improve sprint performance with successive sprints by 6 to 12% compared to passive recovery (remained still), while increasing aerobic contribution to sprint performance by ~15%. In the following study, 5 to 7% greater endurance performance adaptations were achieved with active recovery (40%V̇O2peak) following 2 weeks of Wingate-based HIT. In the final study, shorter sprint protocol (4 to 6 x 15-s sprints interspersed with 2 min of recovery) has been shown to be as effective as typical 30-s Wingate-based HIT in improving cardiorespiratory function and endurance performance over 9 weeks with the improvements in V̇O2peak being completed within 3 weeks, whereas exercise capacity (time to exhaustion) being increased throughout 9 weeks. In conclusion, the studies demonstrate that active recovery at 40% V̇O2peak significantly enhances endurance adaptations to HIT. Further, the duration of the sprint does not seem to be a driving factor in the magnitude of change with 15 sec sprints providing similar adaptations to 30 sec sprints. Taken together, this suggests that the arrangement of recovery mode should be considered to ensure maximal adaptation to HIT, and the practicality of the training would be enhanced via the reduction in sprint duration without diminishing overall training adaptations.
Resumo:
Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciada em Fisioterapia
Resumo:
The so-called toxic triad of factors linked to cancer, namely obesity, poor cardiorespiratory fitness and physical inactivity, increase the risk of cancer and, when cancer is present, worsen its prognosis. Thus, obesity and a sedentary lifestyle have been linked to an elevated cancer risk whereas regular physical exercise and good cardiorespiratory function (CRF) diminish this risk. Despite genetic risk factors, there is evidence to show that some lifestyle modifications are capable of reducing the incidence of cancer and its associated morbidity and mortality. Regular physical exercise targeted at maintaining body weight within healthy limits and improving CRF will reduce a person's cancer risk and, once diagnosed, will also improve its prognosis, reducing mortality and the risk of disease recurrence through similar effects. In this review, we describe how physical activity can be used as a pleiotropic, coadjuvant tool to minimize the toxic triad for cancer and update the mechanisms proposed to date for the effects observed.
Resumo:
The objective of this study was to evaluate cardiorespiratory fitness and pulmonary function and the relationship with metabolic variables and C-reactive protein (CRP) plasma levels in individuals with diabetes mellitus (DM). Nineteen men with diabetes and 19 age- and gender-matched control subjects were studied. All individuals were given incremental cardiopulmonary exercise and pulmonary function tests. In the exercise test, maximal workload (158.3±22.3vs 135.1±25.2, P=0.005), peak heart rate (HRpeak: 149±12 vs 139±10, P=0.009), peak oxygen uptake (VO2peak: 24.2±3.2 vs18.9±2.8, P<0.001), and anaerobic threshold (VO2VT: 14.1±3.4 vs 12.2±2.2, P=0.04) were significantly lower in individuals with diabetes than in control subjects. Pulmonary function test parameters, blood pressure, lipid profile (triglycerides, HDL, LDL, and total cholesterol), and CRP plasma levels were not different in control subjects and individuals with DM. No correlations were observed between hemoglobin A1C (HbA1c), CRP and pulmonary function test and cardiopulmonary exercise test performance. In conclusion, the results demonstrate that nonsmoking individuals with DM have decreased cardiorespiratory fitness that is not correlated with resting pulmonary function parameters, HbA1c, and CRP plasma levels.
Resumo:
Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent complications associated with excess adiposity. Its pathogenesis is complex and there are multiple factors that may contribute to it. AIM: To analyze whether cardiorespiratory ftness (CRF), waist circumference (WC), and C-reactive protein (CRP) are associated with alanine aminotransferase (ALT) in children with obesity. METHODS: 79 overweight/obese children of both genders, 11-13 year-olds, with abnormal serum ALT from Porto public schools comprised the sample. Measurements included CRF (20-m Shuttle Run Test), WC (NHANES protocol), CRP and ALT (Cholestech LDX analyzer). Logistic regression adjusted for gender, maturation, and weight with ALT levels as dependent variable (risk vs. non risk), and WC (risk vs. non risk), CRP (risk vs. non risk), and CRF (fit vs. unfit) as independent variables. Level of significance was set at 95%. RESULTS: Logistic regression showed that obese fit children were less likely to have abnormal ALT values (OR=.031) CONCLUSION: In obese children, higher cardiovascular fitness appears to reduce the chance of decreased liver function. © 2013 Human Kinetics, Inc.
Resumo:
to investigate the pulmonary response to exercise of non-morbidly obese adolescents, considering the gender. a prospective cross-sectional study was conducted with 92 adolescents (47 obese and 45 eutrophic), divided in four groups according to obesity and gender. Anthropometric parameters, pulmonary function (spirometry and oxygen saturation [SatO2]), heart rate (HR), blood pressure (BP), respiratory rate (RR), and respiratory muscle strength were measured. Pulmonary function parameters were measured before, during, and after the exercise test. BP and HR were higher in obese individuals during the exercise test (p = 0.0001). SatO2 values decreased during exercise in obese adolescents (p = 0.0001). Obese males had higher levels of maximum inspiratory and expiratory pressures (p = 0.0002) when compared to obese and eutrophic females. Obese males showed lower values of maximum voluntary ventilation, forced vital capacity, and forced expiratory volume in the first second when compared to eutrophic males, before and after exercise (p = 0.0005). Obese females had greater inspiratory capacity compared to eutrophic females (p = 0.0001). Expiratory reserve volume was lower in obese subjects when compared to controls (p ≤ 0,05). obese adolescents presented changes in pulmonary function at rest and these changes remained present during exercise. The spirometric and cardiorespiratory values were different in the four study groups. The present data demonstrated that, in spite of differences in lung growth, the model of fat distribution alters pulmonary function differently in obese female and male adolescents.
Resumo:
OBJECTIVE: To differentiate the nature of functional cardiorespiratory limitations during exercise in individuals with chronic obstructive pulmonary disease (COPD) or congestive heart failure (CHF) and to determine indicators that may help their classifications. METHODS: The study comprised 40 patients: 23 with COPD and 17 with CHF. All individuals underwent maximal cardiopulmonary exercise testing on a treadmill. RESULTS: The values of peak gas exchange ratio (R peak), peak carbon dioxide production (VCO2 peak), and peak oxygen ventilatory equivalent (V E O2 peak) were higher in the patients with CHF than in those with COPD, and, therefore, those were the variables that characterized the differences between the groups. For group classification, the differentiating functions with the R peak, VCO2 peak (L/min), and V E O2 peak variables were used as follows: group COPD: - 44.886 + 78.832 x R peak + 5.442 x VCO2 peak + 0.336 x V E O2 peak; group CHF: - 69.251 + 89.740 x R peak + 8.461 x VCO2 peak + 0.574 x V E O2 peak. The differentiating function, whose result is greater, correctly classifies the patient's group as 90%. CONCLUSION: The R peak, VCO2 peak, and V E O2 peak values may be used to identify the cause of the functional cardiorespiratory limitations in patients with COPD and CHF.
Resumo:
Buchheit, M, Al Haddad, H, Millet GP, Lepretre, PM, Newton, M, and Ahmaidi, S. Cardiorespiratory and cardiac autonomic responses to 30-15 Intermittent Fitness Test in team sport players. J Strength Cond Res 23(1): xxx-xxx, 2009-The 30-15 Intermittent Fitness Test (30-15IFT) is an attractive alternative to classic continuous incremental field tests for defining a reference velocity for interval training prescription in team sport athletes. The aim of the present study was to compare cardiorespiratory and autonomic responses to 30-15IFT with those observed during a standard continuous test (CT). In 20 team sport players (20.9 +/- 2.2 years), cardiopulmonary parameters were measured during exercise and for 10 minutes after both tests. Final running velocity, peak lactate ([La]peak), and rating of perceived exertion (RPE) were also measured. Parasympathetic function was assessed during the postexercise recovery phase via heart rate (HR) recovery time constant (HRRtau) and HR variability (HRV) vagal-related indices. At exhaustion, no difference was observed in peak oxygen uptake (&OV0312;o2peak), respiratory exchange ratio, HR, or RPE between 30-15IFT and CT. In contrast, 30-15IFT led to significantly higher minute ventilation, [La]peak, and final velocity than CT (p < 0.05 for all parameters). All maximal cardiorespiratory variables observed during both tests were moderately to well correlated (e.g., r = 0.76, p = 0.001 for &OV0312;o2peak). Regarding ventilatory thresholds (VThs), all cardiorespiratory measurements were similar and well correlated between the 2 tests. Parasympathetic function was lower after 30-15IFT than after CT, as indicated by significantly longer HHRtau (81.9 +/- 18.2 vs. 60.5 +/- 19.5 for 30-15IFT and CT, respectively, p < 0.001) and lower HRV vagal-related indices (i.e., the root mean square of successive R-R intervals differences [rMSSD]: 4.1 +/- 2.4 and 7.0 +/- 4.9 milliseconds, p < 0.05). In conclusion, the 30-15IFT is accurate for assessing VThs and &OV0312;o2peak, but it alters postexercise parasympathetic function more than a continuous incremental protocol.
Resumo:
Objective To compare the cardiorespiratory changes induced by equipotent concentrations of halothane (HAL), isoflurane (ISO) and sevollurane (SEVO) before and after hemorrhage.Study design. Prospective, randomized clinical trial.Animals. Twenty-four healthy adult dogs weighing 15.4 +/- 3.4 kg (mean +/- SD).Methods. Animals were randomly allocated to one of three groups (n = 8 per group). In each group, anesthesia was maintained with 1.5 minimum alveolar concentration of HAL (1.3%), ISO (1.9%,) and SEVO (3.5%) in oxygen. Controlled ventilation was performed to maintain eucapnia. Cardiorespiratory variables were evaluated at baseline (between 60 and 90 minutes after induction), immediately after and 30 minutes after the withdrawal of 32 mL kg(-1) of blood (400% of the estimated blood volume) over a 30-minute period.Results. During baseline conditions, ISO and SEVO resulted in higher cardiac index (CI) than HAL. Heart rates were higher with SEVO at baseline. while mean arterial pressure (MAP) and mean pulmonary arterial pressure did not differ between groups. Although heart rate values were higher for ISO and SEVO after hemorrhage, only ISO resulted in a higher CI when compared with HAL. In ISO-anesthetized dogs, MAP was higher immediately after hemorrhage, and this was related to better maintenance of CI and to an increase in systemic vascular resistance index from baseline.Conclusions. Although the hemodynamic responses of ISO and SEVO are similar in normovolaemic dogs, ISO results in better maintenance of circulatory function during the early period following a massive blood loss. Clinical relevance Inhaled anesthetics should be used judiciously in animals presented with blood loss. However, if an inhalational agent is to be used under these circumstances, ISO may provide better hemodynamic stability than SEVO or HAL.
Resumo:
Six Welsh gelding ponies (weight 246 ± 6 kg) were premedicated with 0.03 mg/kg of acepromazine intravenously (i.v.) followed by 0.02 mg/kg of detomidine i.v. Anaesthesia was induced with 2 mg/kg of ketamine i.v. Ponies were intubated and lay in left lateral recumbency. On one occasion anaesthesia was maintained for 2 h using 1.2% halothane in oxygen. The same group of ponies were anaesthetized 1 month later using the same induction regime and anaesthesia was maintained with a combination of detomidine, ketamine and guaiphenesin, while the ponies breathed oxygen-enriched air. Electrocardiogram, heart rate, mean arterial blood pressure, cardiac output, respiratory rate, blood gases, temperature, haematocrit, glucose, lactate and cortisol were measured and cardiac index and systemic vascular resistance were calculated in both groups. Beta-endorphin, met-enkephalin, dynorphin, arginine vasopressin (AVP), adrenocorticotrophic hormone (ACTH) and catecholamines were measured in the halothane anaesthesia group only and 11-deoxycortisol during total intravenous anaesthesia (TIVA) only. Cardiorespiratory depression was more marked during halothane anaesthesia. Hyperglycaemia developed in both groups. Lactate and AVP increased during halothane anaesthesia. Cortisol increased during halothane and decreased during TIVA. There were no changes in the other hormones during anaesthesia. Recovery was smooth in both groups. TIVA produced better cardiorespiratory performance and suppressed the endocrine stress response observed during halothane anaesthesia.
Resumo:
The sensing of blood gas tensions and/or pH is an evolutionarily conserved, homeostatic mechanism, observable in almost all species studied from invertebrates to man. In vertebrates, a shift from the peripheral O2-oriented sensing in fish, to the central CO2/pH sensing in most tetrapods reflects the specific behavioral requirements of these two groups whereby, in teleost fish, a highly O2-oriented control of breathing matches the ever-changing and low oxygen levels in water, whilst the transition to air-breathing increased the importance of acid-base regulation and O2-related drive, although retained, became relatively less important. The South American lungfish and tetrapods are probably sister groups, a conclusion backed up by many similar features of respiratory control. For example, the relative roles of peripheral and central chemoreceptors are present both in the lungfish and in land vertebrates. In both groups, the central CO2/pH receptors dominate the ventilatory response to hypercarbia (60-80), while the peripheral CO2/pH receptors account for 20-30. Some basic components of respiratory control have changed little during evolution. This review presents studies that reflect the current trends in the field of chemoreceptor function, and several laboratories are involved. An exhaustive review on the previous literature, however, is beyond the intended scope of the article. Rather, we present examples of current trends in respiratory function in vertebrates, ranging from fish to humans, and focus on both O2 sensing and CO2 sensing. As well, we consider the impact of chronic levels of hypoxia - a physiological condition in fish and in land vertebrates resident at high elevations or suffering from one of the many cardiorespiratory disease states that predispose an animal to impaired ventilation or cardiac output. This provides a basis for a comparative physiology that is informative about the evolution of respiratory functions in vertebrates and about human disease. Currently, most detail is known for mammals, for which molecular biology and respiratory physiology have combined in the discovery of the mechanisms underlying the responses of respiratory chemoreceptors. Our review includes new data on nonmammalian vertebrates, which stresses that some chemoreceptor sites are of ancient origin.
Resumo:
Twenty-four bitches which had been in labour for less than 12 hours were randomly divided into four groups of six. They all received 0(.)5 mg/kg of chlorpromazine intravenously as premedication, followed 15 minutes later by either 8 mg/kg of thiopentone intravenously (group 1), 2 mg/kg of ketamine and 0-5 mg/kg of midazolam intravenously (group 2), 5 mg/kg of propofol intravenously (group 3), or 2(.)5 mg/kg of 2 per cent lidocaine with adrenaline and 0(.)625 mg/kg of 0(.)5 per cent bupivacaine with adrenaline epidurally (group 4). Except for group 4, the bitches were intubated and anaesthesia was maintained with enflurane. The puppies' heart and respiratory rates and their pain, sucking, anogenital, magnum and flexion reflexes were measured as they were removed from the uterus. The puppies' respiratory rate was higher after epidural anaesthesia. in general the puppies' neurological reflexes were most depressed after midazolam/ketamine, followed by thiopentone, propofol and epidural anaesthesia.
Resumo:
Background: Currently, under half of the adolescents reach recommended daily levels of physical activity (PA). It is known that higher levels of PA lead to higher levels of cardiorespiratory fitness (CRF) and therefore, a health-related CRF criterion value could contribute to identify the target population for primary cardiovascular disease prevention. Therefore, the aim of this study was to explore the relation between PA levels and CRF factors in healthy adolescents. Methods: A cross-sectional exploratory study with healthy adolescents aged 12-18 years old was conducted. Socio-demographic and body composition data were collected using a questionnaire. PA level was scored with the Physical Activity Index (PAI) and CRF assessment included lung function (LF) measured with spirometry and exercise tolerance measured with Incremental Shuttle Walking Test (ISWT). According to PAI scores the sample was divided in two groups: 1 (sedentary, low and moderately active); 2 (vigorously active (VA)). Descriptive statistics were applied to characterise the sample. Independent sample t-tests assessed differences between groups and simple logistic regressions identified the predictors of being VA. Results: The study included 115 adolescents (14.63±1.70 years old; 56.52% female). Adolescents presented a normal body mass index=21.19±3.14 Kg.m-2) and LF (forced expiratory volume in the first second (FEV1)=105.58±12.73% of the predicted). Significant differences were found between groups in height (G1–163.44±8.01; G2–167±8.65; p=0.024), LF (FEV1/ forced vital capacity (FVC); G1–97.58±10.66; G2–94.04±8.04; p=0.049), ISWT distance (G1– 1089.81±214.04; G2–1173.60±191.86; p=0.038); heart rate (HR) at rest (G1– 84.61±13.68; G2–79.23±13.81; p=0.038), HR at the end of the best ISWT (G1– 124.71±37.57; G2–133.54±33.61; p=0.041) and percentage of the maximal HR achieved during ISWT (G1–63.09±19.03; G2–67.53±17.08; p=0.043). Simple logistic regressions showed that height (OR–1.054; 95%CI 1.006-1.104), ISWT distance (OR–1.002; 95%CI 1.000-1.004) and HR at rest (OR–0.971; 95%CI 0.945-0.999) were predictors of being VA. Conclusions: Results suggest that more physically active adolescents have a better CRF profile. The findings suggest that PA is important to adolescents’ health status and it should be encouraged since childhood. Clinical practice will benefit from the use of PAI, ISWT and HR findings, allowing physiotherapists to use it for prescribing exercise.
Resumo:
Cardiovascular disease (CVD) is the biggest killer of people in western civilisation. Age is a significant risk factor for the development for CVD, and treatments and therapies to address this increased risk are crucial to quality of life and longevity. Exercise is one such intervention which has been shown to reduce CVD risk. Age is also associated with endothelial dysfunction, reduced angiogenic capabilities, and reduced ability to repair the vessel wall. Circulating angiogenic cells (CACs) are a subset of circulating cells which assist in the repair and growth of the vasculature and in the maintenance of endothelial function. Reductions in these cells are observed in those with vascular disease compared to age-matched healthy controls. Exercise may reduce CVD risk by improvements in number and/or function of these CACs. Data was collected from human volunteers of various ages, cardiorespiratory fitness (CRF) levels and latent viral infection history status to investigate the effects of chronological age, CRF, viral serology and other lifestyle factors, such as sedentary behaviours and exercise on CACs. The levels of CACs in these volunteers were measured using four colour flow cytometry using various monoclonal antibodies specific to cell surface markers that are used to identify specific subsets of these CACs. In addition, the response to acute exercise of a specific subset of these CACs, termed ‘angiogenic T-cells’ (TANG) were investigated, in a group of well-trained males aged 20-40 years, using a strenuous submaximal exercise bout. Advancing age was associated with a decline in various subsets of CACs, including bone marrow-derived CD34+ progenitors, putative endothelial progenitor cells (EPCs) and also TANG cells. Individuals with a higher CRF were more likely to have higher circulating numbers of TANG cells, particularly in the CD4+ subset. CRF did not appear to modulate CD34+ progenitors or EPC subsets. Increasing sitting time was associated with reduction in TANG cells, but after correcting for the effects of fitness, sitting time no longer negatively affected the circulating number of these cells. Acute exercise was a powerful stimulus for increasing the number of TANG cells (140% increase), potentially through an SDF-1:CXCR4-dependent mechanism, but more studies are required to investigate this. Latent CMV infection was associated with higher number of TANG cells (CD8+), but only in 18-40 year old individuals, and not in an older age group (41-65 year old). The significance of this has yet to be understood. In conclusion, advancing age may contribute to increased CVD risk partly due to the observed reductions in angiogenic cells circulating in the peripheral compartment. Maintaining a high CRF may attenuate this CVD reduction by modulating TANG cell number, but potentially not CD34+ progenitor or EPC subsets. Acute exercise may offer a short window for vascular adaptation through the mobilisation of TANG cells into the circulation.