999 resultados para Cardiac fibroblast-myofibroblast transformation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: This study sought to identify the relationship between fibroblast telomerase expression, myofibroblasts, and telomerase-mediated regulatory signals in idiopathic pulmonary fibrosis. METHODS: Thirty-four surgical lung biopsies, which had been obtained from patients with idiopathic pulmonary fibrosis and histologically classified as usual interstitial pneumonia, were examined. Immunohistochemistry was used to evaluate fibroblast telomerase expression, myofibroblast alpha-smooth muscle actin expression and the tissue expression of interleukin-4, transforming growth factor-beta, and basic fibroblast growth factor. The point-counting technique was used to quantify the expression of these markers in unaffected, collapsed, mural fibrosis, and honeycombing areas. The results were correlated to patient survival. RESULTS: Fibroblast telomerase expression and basic fibroblast growth factor tissue expression were higher in collapsed areas, whereas myofibroblast expression and interleukine-4 tissue expression were higher in areas of mural fibrosis. Transforming growth factor-beta expression was higher in collapsed, mural fibrosis and honeycombing areas in comparison to unaffected areas. Positive correlations were found between basic fibroblast growth factor tissue expression and fibroblast telomerase expression and between interleukin-4 tissue expression and myofibroblast alpha-smooth muscle actin expression. Negative correlations were observed between interleukin-4 expression and basic fibroblast growth factor tissue expression in areas of mural fibrosis. Myofibroblast alpha-smooth muscle actin expression and interleukin-4 tissue expression in areas of mural fibrosis were negatively associated with patient survival. CONCLUSION: Fibroblast telomerase expression is higher in areas of early remodeling in lung tissues demonstrating typical interstitial pneumonia, whereas myofibroblast alpha-smooth muscle actin expression predominates in areas of late remodeling. These events seem to be regulated by basic fibroblast growth factor and interleukin-4 tissue expression, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: This study sought to identify the relationship between fibroblast telomerase expression, myofibroblasts, and telomerase-mediated regulatory signals in idiopathic pulmonary fibrosis. METHODS: Thirty-four surgical lung biopsies, which had been obtained from patients with idiopathic pulmonary fibrosis and histologically classified as usual interstitial pneumonia, were examined. Immunohistochemistry was used to evaluate fibroblast telomerase expression, myofibroblast α-smooth muscle actin expression and the tissue expression of inter leu kin-4, transforming growth factor-β, and basic fibroblast growth factor. The point-counting technique was used to quantify the expression of these markers in unaffected, collapsed, mural fibrosis, and honeycombing areas. The results were correlated to patient survival. RESULTS: Fibroblast telomerase expression and basic fibroblast growth factor tissue expression were higher in collapsed areas, whereas myofibroblast expression and interleukine-4 tissue expression were higher in areas of mural fibrosis. Transforming growth factor-β expression was higher in collapsed, mural fibrosis and honeycombing areas in comparison to unaffected areas. Positive correlations were found between basic fibroblast growth factor tissue expression and fibroblast telomerase expression and between interleukin-4 tissue expression and myofibroblast α-smooth muscle actin expression. Negative correlations were observed between interleukin-4 expression and basic fibroblast growth factor tissue expression in areas of mural fibrosis. Myofibroblast α-smooth muscle actin expression and interleukin-4 tissue expression in areas of mural fibrosis were negatively associated with patient survival. CONCLUSION: Fibroblast telomerase expression is higher in areas of early remodeling in lung tissues demonstrating typical interstitial pneumonia, whereas myofibroblast α-smooth muscle actin expression predominates in areas of late remodeling. These events seem to be regulated by basic fibroblast growth factor and interleukin-4 tissue expression, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural remodeling of the myocardium associated with mechanical overload or cardiac infarction is accompanied by the appearance of myofibroblasts. These fibroblast-like cells express alpha-smooth muscle actin (alphaSMA) and have been shown to express connexins in tissues other than heart. The present study examined whether myofibroblasts of cardiac origin establish heterocellular gap junctional coupling with cardiomyocytes and whether ensuing electrotonic interactions affect impulse propagation. For this purpose, impulse conduction characteristics (conduction velocity [theta] and maximal upstroke velocity [dV/dtmax]) were assessed optically in cultured strands of cardiomyocytes, which were coated with fibroblasts of cardiac origin. Immunocytochemistry showed that cultured fibroblasts underwent a phenotype switch to alphaSMA-positive myofibroblasts that expressed connexin 43 and 45 both among themselves and at contact sites with cardiomyocytes. Myofibroblasts affected theta and dV/dtmax in a cell density-dependent manner; a gradual increase of myofibroblast-to-cardiomyocyte ratios up to 7:100 caused an increase of both theta and dV/dtmax, which was followed by a progressive decline at higher ratios. On full coverage of the strands with myofibroblasts (ratio >20:100), theta fell <200 mm/s. This biphasic dependence of theta and dV/dtmax on myofibroblast density is reminiscent of "supernormal conduction" and is explained by a myofibroblast density-dependent gradual depolarization of the cardiomyocyte strands from -78 mV to -50 mV as measured using microelectrode recordings. These findings suggest that myofibroblasts, apart from their role in structural remodeling, might contribute to arrhythmogenesis by direct electrotonic modulation of conduction and that prevention of their appearance might represent an antiarrhythmic therapeutic target.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-dependent slow conduction. Methods and results Effects of defined levels of strain on single-cell electrophysiology (patch clamp) and impulse conduction in patterned growth cell strands (optical mapping) were investigated in neonatal rat ventricular cell cultures (Wistar) grown on flexible substrates. While 10.5% strain only minimally affected conduction times in control CMC strands (+3.2%, n.s.), it caused a significant slowing of conduction in the fibrosis model consisting of CMC strands coated with MFBs (conduction times +26.3%). Increased sensitivity to strain of the fibrosis model was due to activation of mechanosensitive channels (MSCs) in both CMCs and MFBs that aggravated the MFB-dependent baseline depolarization of CMCs. As found in non-strained preparations, baseline depolarization of CMCs was partly due to the presence of constitutively active MSCs in coupled MFBs. Constitutive activity of MSCs was not dependent on the contractile state of MFBs, because neither stimulation (thrombin) nor suppression (blebbistatin) thereof significantly affected conduction velocities in the non-strained fibrosis model. Conclusions The findings demonstrate that both constitutive and strain-induced activity of MSCs in MFBs significantly enhance their depolarizing effect on electrotonically coupled CMCs. Ensuing aggravation of slow conduction may contribute to the precipitation of strain-related arrhythmias in fibrotically remodelled hearts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Renal cortical fibroblasts have key roles in mediating intercellular communication with neighboring/infiltrating cells and extracellular matrix (ECM) and maintenance of renal tissue architecture. They express a variety of cytokines, chemokines, growth factors and cell adhesion molecules, playing an active role in paracrine and autocrine interactions and regulating both fibrogenesis and the interstitial inflammatory response. They additionally have an endocrine function in the production of epoetin. Tubulointerstitial fibrosis, the common pathological consequence of renal injury, is characterized by the accumulation of extracellular matrix largely due to excessive production in parallel with reduced degradation, and activated fibroblasts characterized by a myofibroblastic phenotype. Fibroblasts in the kidney may derive from resident fibroblasts, from the circulating fibroblast population or from haemopoetic progenitor or stromal cells derived from the bone marrow. Cells exhibiting a myofibroblastic phenotype may derive from these sources and from tubular cells undergoing epithelial to mesenchymal transformation in response to renal injury. The number of interstitial myofibroblasts correlates closely with tubulointerstitial fibrosis and progressive renal failure. Hence inhibiting myofibroblast formation may be an effective strategy in attenuating the development of renal failure in kidney disease of diverse etiology. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ)-induced diabetes. Methods: Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection), after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results: In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E) diastolic filling and isovolumic relaxation time (IVRT) indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion: Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Illegitimate V(D)J-recombination in lymphoid malignancies involves rearrangements in immunoglobulin or T-cell receptor genes, and these rearrangements may play a role in oncogenic events. High frequencies of TRGV-BJ hybrid gene (rearrangement between the TRB and TRG loci at 7q35 and 7p14-15, respectively) have been detected in lymphocytes from patients with ataxia telangiectasia (AT), and also in patients with lymphoid malignancies. Although the TRGV-BJ gene has been described only in T-lymphocytes, we previously detected the presence of TRGV-BJ hybrid gene in the genomic DNA extracted from SV40-transformed AT5BIVA fibroblasts from an AT patient. Aiming to determine whether the AT phenotype or the SV40 transformation could be responsible for the production of the hybrid gene by illegitimate V(D)J-recombination, DNA samples were extracted from primary and SV40-transformed (normal and AT) cell lines, following Nested-PCR with TRGV- and TRBJ-specific primers. The hybrid gene was only detected in SV40-transformed fibroblasts (AT-5BIVA and MRC-5). Sequence alignment of the cloned PCR products using the BLAST program confirmed that the fragments corresponded to the TRGV-BJ hybrid gene. The present results indicate that the rearrangement can be produced in nonlymphoid cells, probably as a consequence of the genomic instability caused by the SV40-transformation, and independently of ATM gene mutation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent evidence suggests that the heart possesses a greater regeneration capacity than previously thought. In the present study, we isolated undifferentiated precursors from the cardiac nonmyocyte cell population of neonatal hearts, expanded them in culture, and induced them to differentiate into functional cardiomyocytes. These cardiac precursors appear to express stem cell antigen-1 and demonstrate characteristics of multipotent precursors of mesodermal origin. Following infusion into normal recipients, these cells home to the heart and participate in physiological and pathophysiological cardiac remodeling. Cardiogenic differentiation in vitro and in vivo depends on FGF-2. Interestingly, this factor does not control the number of precursors but regulates the differentiation process. These findings suggest that, besides its angiogenic actions, FGF-2 could be used in vivo to facilitate the mobilization and differentiation of resident cardiac precursors in the treatment of cardiac diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: In vivo differentiation of cardiac myocytes is associated with downregulation of the glucose transporter isoform GLUT1 and upregulation of the isoform GLUT4. Adult rat cardiomyocytes in primary culture undergo spontaneous dedifferentiation, followed by spreading and partial redifferentiation, which can be influenced by growth factors. We used this model to study the signaling mechanisms modifying the expression of GLUT4 in cardiac myocytes. RESULTS: Adult rat cardiomyocytes in primary culture exhibited spontaneous upregulation of GLUT1 and downregulation of GLUT4, suggesting resumption of a fetal program of GLUT gene expression. Treatment with IGF-1 and, to a minor extent, FGF-2 resulted in restored expression of GLUT4 protein and mRNA. Activation of p38 MAPK mediated the increased expression of GLUT4 in response to IGF-1. Transient transfection experiments in neonatal cardiac myocytes confirmed that p38 MAPK could activate the glut4 promoter. Electrophoretic mobility shift assay in adult rat cardiomyocytes and transient transfection experiments in neonatal cardiac myocytes indicated that MEF2 was the main transcription factor transducing the effect of p38 MAPK activation on the glut4 promoter. CONCLUSION: Spontaneous dedifferentiation of adult rat cardiomyocytes in vitro is associated with downregulation of GLUT4, which can be reversed by treatment with IGF-1. The effect of IGF-1 is mediated by the p38 MAPK/MEF2 axis, which is a strong inducer of GLUT4 expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although cardiac stem cells have been isolated based on stem cell surface markers, no single marker is stem cell-specific. Clonogenicity is a defining functional property of stemness. We therefore analyzed cardiac cell clones derived from human hearts.Methods: Clonogenic cells were derived from adult human atrial samples. Cells were either cultured in the absence of an initial marker selection or, in separate experiments, they were initially selected for c-kit (CD117), CD31 or CD164 by magnetic immunobeads, or for high aldehyde dehydrogenase activity (ALDH) by FACS. High ALDH activity has been linked to stem/progenitor cells in several tissues. Surface marker analysis was performed by flow cytometry. Cultured cells were also exposed to different factors that modulate cell differentiation, including Dikkopf-1, Noggin, and Wnt-5.Results: Clonogenic cells mainly showed fibroblast-like morphology, ability to grow for more than 30 passages in vitro, and a heterogeneous marker profile even in clones derived from the same cardiac sample. The predominant phenotype was positive for CD13, CD29, CD31, CD44, CD54, CD105 and CD146, but negative for CD10, CD11b, CD14, CD15, CD34, CD38, CD45, CD56, CD106, CD117, CD123, CD133, CD135 and CD271, primarily consistent with endothelial/vascular progenitor cells. However, a minority of clones showed a different profile characterized by expression of CD90, CD106 and CD318, but not CD31 and CD146, consistent with mesenchymal stem/progenitor cells. When initial cell selection was performed, both phenotypes were observed, similarly to unselected cells, irrespective of the selection marker used. Of note, CD117+ sorted cell clones were CD117-negative in culture. Regardless of the immunophenotype, several clones were able to form spheric cell aggregates (cardiospheres), a distinct stem cell property. Dikkopf-1 induced marked CD15 and CD106 upregulation, consistent with stromal differentiation; this effect was prevented by Noggin.Conclusions: The adult human heart contains clonogenic stem/progenitor cells that can be expanded for many passages and form cardiospheres. The surface marker profile of these cells is heterogeneous, consistent with a majority of clones being comprised of endothelial or vascular progenitor cells and a minority of clones consisting of mesenchymal stem/progenitor cells. Dikkopf-1 and Noggin showed opposing effects on stromal differentiation of human cardiac cell clones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid tumor growth triggers a wound healing response. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts (also referred to as cancer-associated fibroblasts) primarily, but not exclusively, in response to transforming growth factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among proteases implicated in stroma remodeling, matrix metalloproteinases (MMPs), including MMP-9, play a prominent role. Recent evidence indicates that MMP-9 recruitment to the tumor cell surface enhances tumor growth and invasion. In the present work, we addressed the potential relevance of MMP-9 recruitment to and activity at the surface of fibroblasts. We show that recruitment of MMP-9 to the fibroblast cell surface occurs through its fibronectin-like (FN) domain and that the molecule responsible for the recruitment is lysyl hydroxylase 3 (LH3). Functional assays suggest that both pro- and active MMP-9 trigger α-smooth muscle actin expression in cultured fibroblasts, reflecting myofibroblast differentiation, possibly as a result of TGF-β activation. Moreover, the recombinant FN domain inhibited both MMP-9-induced TGF-β activation and α-smooth muscle actin expression by displacing MMP-9 from the fibroblast cell surface. Together our results uncover LH3 as a new docking receptor of MMP-9 on the fibroblast cell surface and demonstrate that the MMP-9 FN domain is essential for the interaction. They also show that the recombinant FN domain inhibits MMP-9-induced TGF-β activation and fibroblast differentiation, providing a potentially attractive therapeutic reagent toward attenuating tumor progression where MMP-9 activity is strongly implicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifteen symptomatic and seven asymptomatic dogs infected naturally with Leishmania chagasi were examined in order to identify the presence of parasites and changes in heart and lung. Histopathological, cytological, and immunohistochemical analyses were performed on samples of heart and lung tissues. An inflammatory reaction characterized by inflammatory mononuclear, perivascular and intermuscular infiltrates was observed in both symptomatic and asymptomatic animals on histopathological analysis of the heart. In the lung, there was thickening of the alveolar septa due to congestion, edema, inflammatory infiltrate, and fibroblast proliferation. A focal reaction was observed although a diffuse reaction was present in both groups. On cytological examination, heart and lung imprints revealed amastigotes in two symptomatic animals and heart imprints were found in 1 asymptomatic dog. Immunoperoxidase staining showed amastigotes in the lung and heart of only 1 of 6 symptomatic animals examined. Within the ethical principles and limits of this research, it can be inferred that the study of heart and lung alterations in canine visceral leishmaniasis is increasingly important for understanding the problem related to humans. Dogs with visceral leishmaniasis were a good experimental model, since infection was caused by the same agent and the animals developed clinical, pathological and immunological alterations similar to those observed in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low incidence of cardiovascular diseases, including hypertension, in premenopausal women has led to the conclusion that ovarian hormones may have a protective effect on the cardiovascular system. We evaluated the effects of ovariectomy and/or estradiol on sympathovagal balance and heart rate variability (HRV) in female spontaneously hypertensive rats (SHR) with tachycardia and compared them to Wistar rats (12 weeks old; N = 8-12). Ovariectomy (OVX) and/or estradiol (10 µg/kg) did not affect basal arterial pressure in either rat strain, but estradiol increased basal heart rate (HR) in OVX SHR (454 ± 18 vs 377 ± 9 bpm). HR changes elicited by methylatropine and propranolol were used to evaluate the sympathovagal balance. Ovariectomy did not affect the cardiac sympathovagal balance of any group, while estradiol increased sympathetic tone in OVX SHR (120 ± 8 vs 56 ± 10 bpm) and sham-operated Wistar rats (57 ± 7 vs 28 ± 4 bpm), and decreased the parasympathetic tone only in OVX SHR (26 ± 7 vs 37 ± 5 bpm). HRV was studied in the frequency domain (Fast Fourier Transformation). Spectra of HR series were examined at low frequency (LF: 0.2-0.75 Hz) and high frequency (HF: 0.75-3 Hz) bands. The power of LF, as well as the LF/HF ratio, was not affected by ovariectomy, but estradiol increased both LF (29 ± 4 vs 18 ± 3 nu in Wistar sham-operated, 26 ± 5 vs 15 ± 3 nu in Wistar OVX, 50 ± 3 vs 38 ± 4 nu in SHR sham-operated, and 51 ± 3 vs 42 ± 3 nu in SHR OVX) and LF/HF (0.48 ± 0.08 vs 0.23 ± 0.03 nu in Wistar sham-operated, 0.41 ± 0.14 vs 0.19 ± 0.05 nu in Wistar OVX, 0.98 ± 0.11 vs 0.63 ± 0.11 nu in SHR sham-operated, and 1.10 ± 0.11 vs 0.78 ± 0.1 nu in SHR OVX). Thus, we suggest that ovariectomy did not affect the cardiac sympathovagal balance of SHR or Wistar rats, while estradiol increased the sympathetic modulation of HR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we demonstrated the importance of telomerase protein expression and determined the relationships among telomerase, endothelin-1 (ET-1) and myofibroblasts during early and late remodeling of parenchymal and vascular areas in usual interstitial pneumonia (UIP) using 27 surgical lung biopsies from patients with idiopathic pulmonary fibrosis (IPF). Telomerase+, myofibroblasts α-SMA+, smooth muscle cells caldesmon+, endothelium ET-1+ cellularity, and fibrosis severity were evaluated in 30 fields covering normal lung parenchyma, minimal fibrosis (fibroblastic foci), severe (mural) fibrosis, and vascular areas of UIP by the point-counting technique and a semiquantitative score. The impact of these markers was determined in pulmonary functional tests and follow-up until death from IPF. Telomerase and ET-1 expression was significantly increased in normal and vascular areas compared to areas of fibroblast foci. Telomerase and ET-1 expression was inversely correlated with minimal fibrosis in areas of fibroblast foci and directly associated with severe fibrosis in vascular areas. Telomerase activity in minimal fibrosis areas was directly associated with diffusing capacity of the lung for oxygen/alveolar volume and ET-1 expression and indirectly associated with diffusing capacity of the lungs for carbon monoxide and severe fibrosis in vascular areas. Cox proportional hazards regression revealed a low risk of death for females with minimal fibrosis displaying high telomerase and ET-1 expression in normal areas. Vascular dysfunction by telomerase/ET-1 expression was found earlier than vascular remodeling by myofibroblast activation in UIP with impact on IPF evolution, suggesting that strategies aimed at preventing the effect of these mediators may have a greater impact on patient outcome.