882 resultados para Cardiac biomarker
Resumo:
The aim of the present study was to investigate the presence of contaminants in the mussel Perna perna from Sao Sebastiao Channel, São Paulo, Brazil, and to evaluate the effects of these contaminants on these organisms at biochemical (catalase [CAT], glutathione-S-transferase [GST], and cholinesterase [ChE]), cellular (neutral red retention time [NRRT] assay), and physiological (cardiac monitoring) levels. Two sampling surveys were performed (winter of 2001 and summer of 2002) at six stations along the channel: Cigarras, station 1; late Clube de Ilhabela, station 2; Oil Terminal, station 3; Toque Toque, station 4; Ponta da Sela, station 5 (reference station); and Taubate, station 6. Differences in CAT activity were observed between mussels from stations 3 and 5 during the winter, but no differences were detected in the summer. No differences in GST activity were found among stations during the winter, although animals from station 3 showed higher activity during the summer. The ChE activity was significantly higher in the mussels from stations I and 2 during the winter and from stations I and 3 during the summer. Organisms from stations I through 4 showed statistically lower NRRT in both seasons. Similar heart rates were observed in the mussels from all stations. Hydrocarbons were detected in organisms from all the stations in both seasons. During the winter, higher polycyclic aromatic hydrocarbon (PAH) levels were observed in organisms from station 3, whereas during the summer, higher levels of metals were found in organisms from stations 1, 3, and 4. The multivariate analyses showed a strong influence of PAHs on the winter biological results, but metals showed higher influence on these responses in the summer, indicating multiple contaminant sources.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
B type natriuretic peptide (BNP) and its precursor, the inactive form of NT-pro-BNP, are currently the most studied laboratory parameters in the heart disease spectrum. The assessment of their blood concentrations provides invaluable information on the likelihood, severity and prognosis of the disease. The present review aims to describe the biological determinants, the factors that influence these peptide concentrations, the suggested cutoff values for the diagnosis of heart failure and the use of this biomarker in the assessment of cardiac function.
Resumo:
We assessed the feasibility and the procedural and long-term safety of intracoronary (i.c) imaging for documentary purposes with optical coherence tomography (OCT) and intravascular ultrasound (IVUS) in patients with acute ST-elevation myocardial infarction (STEMI) undergoing primary PCI in the setting of IBIS-4 study. IBIS4 (NCT00962416) is a prospective cohort study conducted at five European centers including 103 STEMI patients who underwent serial three-vessel coronary imaging during primary PCI and at 13 months. The feasibility parameter was successful imaging, defined as the number of pullbacks suitable for analysis. Safety parameters included the frequency of peri-procedural complications, and major adverse cardiac events (MACE), a composite of cardiac death, myocardial infarction (MI) and any clinically-indicated revascularization at 2 years. Clinical outcomes were compared with the results from a cohort of 485 STEMI patients undergoing primary PCI without additional imaging. Imaging of the infarct-related artery at baseline (and follow-up) was successful in 92.2 % (96.6 %) of patients using OCT and in 93.2 % (95.5 %) using IVUS. Imaging of the non-infarct-related vessels was successful in 88.7 % (95.6 %) using OCT and in 90.5 % (93.3 %) using IVUS. Periprocedural complications occurred <2.0 % of OCT and none during IVUS. There were no differences throughout 2 years between the imaging and control group in terms of MACE (16.7 vs. 13.3 %, adjusted HR1.40, 95 % CI 0.77-2.52, p = 0.27). Multi-modality three-vessel i.c. imaging in STEMI patients undergoing primary PCI is consistent a high degree of success and can be performed safely without impact on cardiovascular events at long-term follow-up.
Resumo:
Polymorbid patients, diverse diagnostic and therapeutic options, more complex hospital structures, financial incentives, benchmarking, as well as perceptional and societal changes put pressure on medical doctors, specifically if medical errors surface. This is particularly true for the emergency department setting, where patients face delayed or erroneous initial diagnostic or therapeutic measures and costly hospital stays due to sub-optimal triage. A "biomarker" is any laboratory tool with the potential better to detect and characterise diseases, to simplify complex clinical algorithms and to improve clinical problem solving in routine care. They must be embedded in clinical algorithms to complement and not replace basic medical skills. Unselected ordering of laboratory tests and shortcomings in test performance and interpretation contribute to diagnostic errors. Test results may be ambiguous with false positive or false negative results and generate unnecessary harm and costs. Laboratory tests should only be ordered, if results have clinical consequences. In studies, we must move beyond the observational reporting and meta-analysing of diagnostic accuracies for biomarkers. Instead, specific cut-off ranges should be proposed and intervention studies conducted to prove outcome relevant impacts on patient care. The focus of this review is to exemplify the appropriate use of selected laboratory tests in the emergency setting for which randomised-controlled intervention studies have proven clinical benefit. Herein, we focus on initial patient triage and allocation of treatment opportunities in patients with cardiorespiratory diseases in the emergency department. The following five biomarkers will be discussed: proadrenomedullin for prognostic triage assessment and site-of-care decisions, cardiac troponin for acute myocardial infarction, natriuretic peptides for acute heart failure, D-dimers for venous thromboembolism, C-reactive protein as a marker of inflammation, and procalcitonin for antibiotic stewardship in infections of the respiratory tract and sepsis. For these markers we provide an overview on physiopathology, historical evolution of evidence, strengths and limitations for a rational implementation into clinical algorithms. We critically discuss results from key intervention trials that led to their use in clinical routine and potential future indications. The rational for the use of all these biomarkers, first, tackle diagnostic ambiguity and consecutive defensive medicine, second, delayed and sub-optimal therapeutic decisions, and third, prognostic uncertainty with misguided triage and site-of-care decisions all contributing to the waste of our limited health care resources. A multifaceted approach for a more targeted management of medical patients from emergency admission to discharge including biomarkers, will translate into better resource use, shorter length of hospital stay, reduced overall costs, improved patients satisfaction and outcomes in terms of mortality and re-hospitalisation. Hopefully, the concepts outlined in this review will help the reader to improve their diagnostic skills and become more parsimonious laboratory test requesters.
Resumo:
AIM To assess whether the established cardiovascular biomarker N-terminal pro-B-type natriuretic peptide (NT-proBNP) provides prognostic information in patients with out-of-hospital cardiac arrest due to ventricular tachycardia or fibrillation (OHCA-VT/VF). METHODS We measured NT-proBNP levels in 155 patients with OHCA-VT/VF enrolled into a prospective multicenter observational study in 21 ICUs in Finland. Blood samples were drawn <6h of OHCA-VT/VF and later after 24h, 48h, and 96h. The end-points were mortality and neurological outcome classified according to Cerebral Performance Category (CPC) after one year. NT-proBNP levels were compared to high-sensitivity troponin T (hs-TnT) levels and established risk scores. RESULTS NT-proBNP levels were higher in non-survivors compared to survivors on study inclusion (median 1003 [quartile (Q) 1-3 502-2457] vs. 527 [179-1284]ng/L, p=0.001) and after 24h (1913 [1012-4573] vs. 1080 [519-2210]ng/L, p<0.001). NT-proBNP levels increased from baseline to 96h after ICU admission (p<0.001). NT-proBNP levels were significantly correlated to hs-TnT levels after 24h (rho=0.27, p=0.001), but not to hs-TnT levels on study inclusion (rho=0.05, p=0.67). NT-proBNP levels at all time points were associated with clinical outcome, but only NT-proBNP levels after 24h predicted mortality and poor neurological outcome, defined as CPC 3-5, in models that adjusted for SAPS II and SOFA scores. hs-TnT levels did not add prognostic information to NT-proBNP measurements alone. CONCLUSION NT-proBNP levels at 24h improved risk assessment for poor outcome after one year on top of established risk indices, while hs-TnT measurements did not further add to risk prediction.
Resumo:
Cardiac Syndrome X (CSX), the presence of angina pectoris with objective signs of myocardial ischaemia despite angiographically normal epicardial coronary arteries, appears to be due to coronary microvascular dysfunction and is known to be associated with an elevation of several inflammatory biomarkers, suggesting a possible role for inflammation in its pathogenesis. We aimed to further characterise this relationship by prospectively analysing a wide variety of molecular biomarkers in a cohort of CSX patients thereby charting the changes in biomarkers throughout the natural history of CSX from its initial diagnosis to eventual disease quiescence. We found that CSX patients, when compared to healthy controls, have a persistent low-grade systemic inflammatory response characterised by an elevation of Tumour Necrosis Factor and Interferon-gamma, regardless of the presence of contemporaneous signs or symptoms of disease activity. Interleukin-6 and C-reactive Protein (CRP) are only elevated when patients have clinical evidence of disease activity and may be state markers in CSX. Moreover, CRP levels appear to correlate with signals of disease severity such as the time taken to develop symptoms during exercise stress testing. We have also demonstrated that the enzyme Indoleamine-2,3- dioxygenase is upregulated in active disease thus providing a possible explanation for the increased burden of psychological disease encountered in CSX. Analysis of the microRNA transcriptome showed that miR-143 is significantly under-expressed in CSX patients. This could allow phenotype switching in vascular smooth muscle cells with the resultant vascular remodelling causing reduced vessel responsiveness to local rheological stimuli and reduced luminal diameter with consequent increased microvascular resistance during times of increased myocardial oxygen demand, thereby limiting maximal hyperaemia during exercise. Our findings corroborate many previous hypotheses regarding the role of inflammation in CSX, generate new insights into possible pathogenic mechanisms and offer new therapeutic targets for the future management of this important cardiological condition.
Resumo:
The potential for serum amyloid P-component (SAP) to prevent cardiac remodeling and identify worsening diastolic dysfunction (DD) was investigated. The anti-fibrotic potential of SAP was tested in an animal model of hypertensive heart disease (spontaneously hypertensive rats treated with SAP [SHR - SAP] × 12 weeks). Biomarker analysis included a prospective study of 60 patients with asymptomatic progressive DD. Compared with vehicle-treated Wistar-Kyoto rats (WKY-V), the vehicle-treated SHRs (SHR-V) exhibited significant increases in left ventricular mass, perivascular collagen, cardiomyocyte size, and macrophage infiltration. SAP administration was associated with significantly lower left ventricular mass (p < 0.01), perivascular collagen (p < 0.01), and cardiomyocyte size (p < 0.01). Macrophage infiltration was significantly attenuated in the SHR-SAP group. Biomarker analysis showed significant decreases in SAP concentration over time in patients with progressive DD (p < 0.05). Our results indicate that SAP prevents cardiac remodeling by inhibiting recruitment of pro-fibrotic macrophages and that depleted SAP levels identify patients with advancing DD suggesting a role for SAP therapy.
Resumo:
Nearly 50% of patients with heart failure (HF) have preserved LV ejection fraction, with interstitial fibrosis and cardiomyocyte hypertrophy as early manifestations of pressure overload. However, methods to assess both tissue characteristics dynamically and noninvasively with therapy are lacking. We measured the effects of mineralocorticoid receptor blockade on tissue phenotypes in LV pressure overload using cardiac magnetic resonance (CMR). Mice were randomized to l-nitro-ω-methyl ester (l-NAME, 3 mg/mL in water; n=22), or l-NAME with spironolactone (50 mg/kg/day in subcutaneous pellets; n=21). Myocardial extracellular volume (ECV; marker of diffuse interstitial fibrosis) and the intracellular lifetime of water (τic; marker of cardiomyocyte hypertrophy) were determined by CMR T1 imaging at baseline and after 7 weeks of therapy alongside histological assessments. Administration of l-NAME induced hypertensive heart disease in mice, with increases in mean arterial pressure, LV mass, ECV, and τic compared with placebo-treated controls, while LV ejection fraction was preserved (>50%). In comparison, animals receiving both spironolactone and l-NAME (l-NAME+S) showed less concentric remodeling, and a lower myocardial ECV and τic, indicating decreased interstitial fibrosis and cardiomyocyte hypertrophy (ECV: 0.43 ± 0.09 for l-NAME versus 0.25 ± 0.03 for l-NAME+S, P<0.001; τic: 0.42 ± 0.11 for l-NAME groups versus 0.12 ± 0.05 for l-NAME+S group). Mice treated with a combination of l-NAME and spironolactone were similar to placebo-treated controls at 7 weeks. Spironolactone attenuates interstitial fibrosis and cardiomyocyte hypertrophy in hypertensive heart disease. CMR can phenotype myocardial tissue remodeling in pressure-overload, furthering our understanding of HF progression.
Resumo:
Cardiac arrhythmias are one of the main causes of death worldwide. Several studies have shown that inflammation plays a key role in different cardiac diseases and Toll-like receptors (TLRs) seem to be involved in cardiac complications. In the present study, we investigated whether the activation of TLR4 induces cardiac electrical remodeling and arrhythmias, and the signaling pathway involved in these effects. Membrane potential was recorded in Wistar rat ventricle. Ca(2+) transients, as well as the L-type Ca(2+) current (ICaL) and the transient outward K(+) current (Ito), were recorded in isolated myocytes after 24 h exposure to the TLR4 agonist, lipopolysaccharide (LPS, 1 μg/ml). TLR4 stimulation in vitro promoted a cardiac electrical remodeling that leads to action potential prolongation associated with arrhythmic events, such as delayed afterdepolarization and triggered activity. After 24 h LPS incubation, Ito amplitude, as well as Kv4.3 and KChIP2 mRNA levels were reduced. The Ito decrease by LPS was prevented by inhibition of interferon regulatory factor 3 (IRF3), but not by inhibition of interleukin-1 receptor-associated kinase 4 (IRAK4) or nuclear factor kappa B (NF-κB). Extrasystolic activity was present in 25% of the cells, but apart from that, Ca(2+) transients and ICaL were not affected by LPS; however, Na(+)/Ca(2+) exchanger (NCX) activity was apparently increased. We conclude that TLR4 activation decreased Ito, which increased AP duration via a MyD88-independent, IRF3-dependent pathway. The longer action potential, associated with enhanced Ca(2+) efflux via NCX, could explain the presence of arrhythmias in the LPS group.
Resumo:
Up to 20% of women with hypertensive pregnancy disorders might persist with chronic hypertension. This study compared clinical and echocardiographic features between women whose hypertension began as hypertensive pregnancy disorders (PH group) and women whose diagnosis of hypertension did not occur during pregnancy (NPH group). Fifty PH and 100 NPH women were cross-sectionally evaluated by clinical, laboratory, and echocardiography analysis, and the groups were matched by duration of hypertension. PH exhibited lower age (46.6 ± 1.4 vs. 65.3 ± 1.1 years; P < .001), but higher systolic (159.8 ± 3.9 vs. 148.0 ± 2.5 mm Hg; P = .009) and diastolic (97.1 ± 2.4 vs. 80.9 ± 1.3 mm Hg; P < .001) blood pressure than NPH, although used more antihypertensive classes (3.4 ± 0.2 vs. 2.6 ± 0.1; P < .001). Furthermore, PH showed higher left ventricular wall thickness and increased prevalence of concentric hypertrophy than NPH after adjusting for age and blood pressure. In conclusion, this study showed that PH may exhibit worse blood pressure control and adverse left ventricular remodeling compared with NPH.
Resumo:
Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation, but also in cell death, transcriptional activation of hypertrophy, inflammation and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.
Resumo:
In this manuscript we briefly describe bipolar disorder (a depressive and manic mental disease), its classification, its effects on the patient, which sometimes include suicidal tendencies, and the drugs used for treatment. We also address the status quo with regard to diagnosis of bipolar disorder and recent advances in bioanalytical approaches for biomarker discovery. These approaches focus on blood samples (serum and plasma) and proteins as the main biomarker targets, and use various strategies for protein depletion. Strategies include use of commercially available kits or other homemade strategies and use of classical proteomics methods for protein identification based on bottom-up or top-down approaches, which used SELDI, ESI, or MALDI as sources for mass spectrometry, and up-to-date mass analyzers, for example Orbitrap. We also discuss some future objectives for treatment of this disorder and possible directions for the correct diagnosis of this still-unclear mental illness.
Resumo:
We report a case of a 67 year-old-male patient admitted to the intensive care unit in the post-coronary bypass surgery period who presented cardiogenic shock, acute renal failure and three episodes of sepsis, the latter with pulmonary distress at the 30th post-operative day. The patient expired within five days in spite of treatment with vancomycin, imipenem, colistimethate and amphotericin B. At autopsy severe adenovirus pneumonia was found. Viral pulmonary infections following cardiovascular surgery are uncommon. We highlight the importance of etiological diagnosis to a correct treatment approach.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the role of angiotensin I, II and 1-7 on left ventricular hypertrophy of Wistar and spontaneously hypertensive rats submitted to sinoaortic denervation. METHODS: Ten weeks after sinoaortic denervation, hemodynamic and morphofunctional parameters were analyzed, and the left ventricle was dissected for biochemical analyses. RESULTS: Hypertensive groups (controls and denervated) showed an increase on mean blood pressure compared with normotensive ones (controls and denervated). Blood pressure variability was higher in denervated groups than in their respective controls. Left ventricular mass and collagen content were increased in the normotensive denervated and in both spontaneously hypertensive groups compared with Wistar controls. Both hypertensive groups presented a higher concentration of angiotensin II than Wistar controls, whereas angiotensin 1-7 concentration was decreased in the hypertensive denervated group in relation to the Wistar groups. There was no difference in angiotensin I concentration among groups. CONCLUSION: Our results suggest that not only blood pressure variability and reduced baroreflex sensitivity but also elevated levels of angiotensin II and a reduced concentration of angiotensin 1-7 may contribute to the development of left ventricular hypertrophy. These data indicate that baroreflex dysfunction associated with changes in the renin angiotensin system may be predictive factors of left ventricular hypertrophy and cardiac failure.