57 resultados para Carcinops troglodytes
Resumo:
Genéticamente, los chimpancés y los bonobos son los parientes vivos más cercanos a los seres humanos, que comparten un ancestro común que vivió hace unos seis millones de años. Los chimpancés se consideran en peligro de extinción por la IUCN y numerosos programas de conservación en África trabajan hacia la protección de la especie y su hábitat. Amenazado por la caza furtiva y la destrucción del hábitat, las cifras de población de chimpancés salvajes siguen disminuyendo. Como consecuencia, un importante flujo de chimpancés en vivo que son víctimas de la caza furtiva son enviados a centros de rehabilitación en África donde viven en semilibertad y en ocasiones son reintroducidos en el medio natural. Un objetivo primordial en estos centros de rescate y rehabilitación es proporcionar a los primates en cautividad con altos estándares de bienestar. La realización de tratamientos médicos adecuados y una gestión cuidadosa contribuye a su buen estado de salud, que a su vez permite a estos centros para garantizar el bienestar óptimo chimpancé. A un nivel veterinaria, la implementación de un tratamiento rápido y efectivo para una enfermedad requiere las herramientas de diagnóstico adecuadas, así como los valores de referencia correctos correspondientes a la especie. El objetivo de la presente tesis es establecer rangos de referencia de los diferentes parámetros clínicos para el chimpancé común (Pan troglodytes), que viven en semi-libertad en su hábitat natural. A fin de establecer valores de referencia, hemos utilizado los datos obtenidos durante los controles de rutina del brezo en chimpancés realizados durante diez años, en Tchimpounga Centro de Rehabilitación de chimpancé. Todos los chimpancés en el Centro de Rehabilitación Tchimpounga someten a controles de salud a su llegada al centro y en adelante cada tres años. Los análisis se llevan a cabo para asegurar la buena salud de la comunidad, y mejorar el control de la transmisión de enfermedades infecciosas, como la tuberculosis. Los análisis incluyen la recogida de sangre de la muestra, electrocardiogramas, radiografías de tórax, ecografía abdominal y pruebas serológicas y bacteriológicas. Estos análisis requieren la inmovilización química del individuo. A su vez, otros controles de salud que no requieren inmovilización química se realizan a diario en el centro por personal cualificado. Estos incluyen el análisis de las heces y la orina, y la exploración física general. La exploración global incluye tomar la temperatura corporal diaria de los chimpancés menores de 10 años en virtud de condicionamiento positivo...
Resumo:
Zygosity determination is important for epidemiological, biological, obstetric, and prognostic studies in both human and nonhuman primates. In this study, microsatellite loci were used to screen a pair of chimpanzee (Pan troglodytes) twins and their parents. The twins share identical alleles at all loci tested. The probability of dizygotic origin is estimated to be 2.9 x 10(-11). Even after excluding linkage of loci on the same chromosome, the probability is still low enough (3.7 x 10(-9)) to exclude dizygotic origin. MHC typing was also done on Patr-DRB and Patr-DQB loci and the twins share identical alleles at both loci, consistent with the microsatellite results. Together these results demonstrate a monozygotic origin for the chimp twins. Our results suggest that microsatellite analysis is a powerful method for zygosity determination, which can be screened reliably and efficiently. Am. J. Primatol. 52:101-106, 2000. (C) 2000 Wiley-Liss, Inc.
Resumo:
It is well known that the chemokine receptor CCR5 plays very important roles in HIV-1 virus infection. A three-dimensional molecular model of human CCR5 was generated by SYBYL, a distance geometry-based homologous modeling package, using the corresponding transmembrane domain of bacteriorhodopsin as the template. On the basis of human CCR5 model, we also built 18 3D molecular models of CCR5 in primates from Pongo pygmaeus, Pygathrix nemaeus, Macaca assameniss, Trachy-pithecus phayrei, T. francoisi, M. arotoides, Rhinopithecus roxellance, R, bieti, R. avunculus, Hylobates leucogenys, Pan troglodytes, Gorilla gorilla, Cercopithecus aethiops 1, C. aethiops 2, Papio hamadryas M. mulatta, M. fascicularis and M. nemestrina. Structural analyses and statistics results suggested that the main-chains of the primate CCR5 were similar to that of the human CCR5 and that the fit-RMS deviation values of these primate CCR5 were less than 0.1 Angstrom. Moreover, the structures of these CCR5 proteins, except those of the African green monkey 1 (C.aet1), do not have a remarkable difference. It is proved that the 14th residue is possibly very important in the inhibition infections by M-tropic HIV-1, and it is also demonstrated that the 13th residue of human CCR5 was changed from asparagine into aspartic acid in all these primates. It means that the primate CCR5 no longer depend on CD4 for efficient entry, but human CCR5 may have evolved subsequently due to the use of CD4 as a receptor, allowing the high-affinity chemokine receptor-binding site of HIV to be sequestered from host immune surveillance. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
酪氨酸酶是黑色素合成当中的关键酶。人酪氨酸酶基因包括5个外显子,在染色体11q14-q21位置上占据了约50kb长的区域。对人类眼皮肤型白化病(Oculocutaneous albinism, OCA)的许多研究表明,该病主要是由于酪氨酸酶基因的突变引起的。昆明动物研究所白化猴研究小组数十年来一直从事白化猕猴的培育和研究工作,目前饲养着2只白化猕猴和它们的后代,这提供了我们研究猕猴白化分子机制目的条件。为了弄清猕猴白化病的分子机制,我们根据人酪氨酸酶基因序列设计了5对PCR引物扩增相应的5个外显子,序列分析表明,白化猕猴珍珍酪氨酸酶基因第184个密码子第2位置(外显子1的核苷酸位置551)处发生一个C→A的无义突变,使编码丝氨酸(Ser)的密码子变成了一个终止密码,这样后面1038bp的核苷酸片段(346个氨基酸残基)被截断,导致酪氨酸酶翻译不完全,迄今为止,并没有发现合成黑色素的第二条生化途径,因此由于该酶不能行使正常功能而将导致黑色素不能正常表达。这可能是导致该例猕猴白化病的原因。为了解酪氨酸酶基因序列变异的规律及其与功能的关系,探讨该基因作为系统发育研究中遗传标记的有效性,我们测定了黑猩猩(Pan troglodytes)、倭黑猩猩(Pan paniscus)、大猩猩(Gorilla gorilla)、猩猩(Pongo pygmaeus)、长臂猿(Hylobates lar)、食蟹猴(Macaca fascicularis)、狒狒(Simia cynocephalus)、猕猴(Macaca mulatta)、熊猴(Macaca assamensis)、菲氏叶猴(Presbytis p. crepusculus)、白臀叶猴(Pygathrix nemaeus)、滇金丝猴(Rhinopithecus r. bieti)和蛛猴(Ateles paniscus)13个灵长类中代表种的酪氨酸酶基因全部5个外显子的DNA序列。基于这些序列,用简约法构建了分子系统树。结果表明,人猿超科与旧大陆猴各自形成一单系群。人猿超科各物种和旧大陆猴有明显分化,人与大猩猩的关系比人与黑猩猩的关系近。酪氨酸酶基因在解决灵长类系统发育关系上是一个较有用的基因。为了进一步了解中国猕猴(Macaca mulatta)的亚种分化和不同地理群体间的基因流状况,我们测定了来自中云南、广西、福建、海南、浙江、河南、湖南、湖北、安徽、四川、贵州和越南猕猴共96只个体和一只外群食蟹猴的线粒体DNA控制区576bp的DNA序列,基于这些序列,运用距离法对中国恒河猴的分子进行和遗传多样性进行了分析,我们的研究结果显示,云南、四川和湖南猕猴群体与其它群体存在显著分析,海南群体内遗传多样性最低、四川、广西、浙江、福建和越南群体内遗传多样性较丰富。中国猕猴的分化可能存在三条路线。中国猕猴的遗传多样性较丰富。
Resumo:
While bonobos and chimpanzees are both genetically and behaviorally very similar, they also differ in significant ways. Bonobos are more cautious and socially tolerant while chimpanzees are more dependent on extractive foraging, which requires tools. The similarities suggest the two species should be cognitively similar while the behavioral differences predict where the two species should differ cognitively. We compared both species on a wide range of cognitive problems testing their understanding of the physical and social world. Bonobos were more skilled at solving tasks related to theory of mind or an understanding of social causality, while chimpanzees were more skilled at tasks requiring the use of tools and an understanding of physical causality. These species differences support the role of ecological and socio-ecological pressures in shaping cognitive skills over relatively short periods of evolutionary time.
Resumo:
Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002-2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of -6.5% to -7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002-2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen.
Resumo:
The mammalian odorant receptor (OR) repertoire is an attractive model to study evolution, because ORs have been subjected to rapid evolution between species, presumably caused by changes of the olfactory system to adapt to the environment. However, functional assessment of ORs in related species remains largely untested. Here we investigated the functional properties of primate and rodent ORs to determine how well evolutionary distance predicts functional characteristics. Using human and mouse ORs with previously identified ligands, we cloned 18 OR orthologs from chimpanzee and rhesus macaque and 17 mouse-rat orthologous pairs that are broadly representative of the OR repertoire. We functionally characterized the in vitro responses of ORs to a wide panel of odors and found similar ligand selectivity but dramatic differences in response magnitude. 87% of human-primate orthologs and 94% of mouse-rat orthologs showed differences in receptor potency (EC50) and/or efficacy (dynamic range) to an individual ligand. Notably dN/dS ratio, an indication of selective pressure during evolution, does not predict functional similarities between orthologs. Additionally, we found that orthologs responded to a common ligand 82% of the time, while human OR paralogs of the same subfamily responded to the common ligand only 33% of the time. Our results suggest that, while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy dynamically change during evolution, even in closely related species. These functional changes in orthologs provide a platform for examining how the evolution of ORs can meet species-specific demands.
Resumo:
Chimpanzees (Pan troglodytes) are often used in movies, commercials and print advertisements with the intention of eliciting a humorous response from audiences. The portrayal of chimpanzees in unnatural, human-like situations may have a negative effect on the public's understanding of their endangered status in the wild while making them appear as suitable pets. Alternatively, media content that elicits a positive emotional response toward chimpanzees may increase the public's commitment to chimpanzee conservation. To test these competing hypotheses, participants (n = 165) watched a series of commercials in an experiment framed as a marketing study. Imbedded within the same series of commercials was one of three chimpanzee videos. Participants either watched 1) a chimpanzee conservation commercial, 2) commercials containing "entertainment" chimpanzees or 3) control footage of the natural behavior of wild chimpanzees. Results from a post-viewing questionnaire reveal that participants who watched the conservation message understood that chimpanzees were endangered and unsuitable as pets at higher levels than those viewing the control footage. Meanwhile participants watching commercials with entertainment chimpanzees showed a decrease in understanding relative to those watching the control footage. In addition, when participants were given the opportunity to donate part of their earnings from the experiment to a conservation charity, donations were least frequent in the group watching commercials with entertainment chimpanzees. Control questions show that participants did not detect the purpose of the study. These results firmly support the hypothesis that use of entertainment chimpanzees in the popular media negatively distorts the public's perception and hinders chimpanzee conservation efforts.
Resumo:
Context can have a powerful influence on decision-making strategies in humans. In particular, people sometimes shift their economic preferences depending on the broader social context, such as the presence of potential competitors or mating partners. Despite the important role of competition in primate conspecific interactions, as well as evidence that competitive social contexts impact primates' social cognitive skills, there has been little study of how social context influences the strategies that nonhumans show when making decisions about the value of resources. Here we investigate the impact of social context on preferences for risk (variability in payoffs) in our two closest phylogenetic relatives, chimpanzees, Pan troglodytes, and bonobos, Pan paniscus. In a first study, we examine the impact of competition on patterns of risky choice. In a second study, we examine whether a positive play context affects risky choices. We find that (1) apes are more likely to choose the risky option when making decisions in a competitive context; and (2) the play context did not influence their risk preferences. Overall these results suggest that some types of social contexts can shift patterns of decision making in nonhuman apes, much like in humans. Comparative studies of chimpanzees and bonobos can therefore help illuminate the evolutionary processes shaping human economic behaviour. © 2012 The Association for the Study of Animal Behaviour.
Resumo:
Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can illuminate which aspects of human spatial development are shared with other primates, versus which aspects are unique to our lineage. Here we present three studies examining spatial memory development in our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (P. paniscus). We first compared memory in a naturalistic foraging task where apes had to recall the location of resources hidden in a large outdoor enclosure with a variety of landmarks (Studies 1 and 2). We then compared older apes using a matched memory choice paradigm (Study 3). We found that chimpanzees exhibited more accurate spatial memory than bonobos across contexts, supporting predictions from these species' different feeding ecologies. Furthermore, chimpanzees - but not bonobos - showed developmental improvements in spatial memory, indicating that bonobos exhibit cognitive paedomorphism (delays in developmental timing) in their spatial abilities relative to chimpanzees. Together, these results indicate that the development of spatial memory may differ even between closely related species. Moreover, changes in the spatial domain can emerge during nonhuman ape ontogeny, much like some changes seen in human children.
Resumo:
To make adaptive choices, individuals must sometimes exhibit patience, forgoing immediate benefits to acquire more valuable future rewards [1-3]. Although humans account for future consequences when making temporal decisions [4], many animal species wait only a few seconds for delayed benefits [5-10]. Current research thus suggests a phylogenetic gap between patient humans and impulsive, present-oriented animals [9, 11], a distinction with implications for our understanding of economic decision making [12] and the origins of human cooperation [13]. On the basis of a series of experimental results, we reject this conclusion. First, bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) exhibit a degree of patience not seen in other animals tested thus far. Second, humans are less willing to wait for food rewards than are chimpanzees. Third, humans are more willing to wait for monetary rewards than for food, and show the highest degree of patience only in response to decisions about money involving low opportunity costs. These findings suggest that core components of the capacity for future-oriented decisions evolved before the human lineage diverged from apes. Moreover, the different levels of patience that humans exhibit might be driven by fundamental differences in the mechanisms representing biological versus abstract rewards.
Resumo:
Although recent research has investigated animal decision-making under risk, little is known about how animals choose under conditions of ambiguity when they lack information about the available alternatives. Many models of choice behaviour assume that ambiguity does not impact decision-makers, but studies of humans suggest that people tend to be more averse to choosing ambiguous options than risky options with known probabilities. To illuminate the evolutionary roots of human economic behaviour, we examined whether our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus), share this bias against ambiguity. Apes chose between a certain option that reliably provided an intermediately preferred food type, and a variable option that could vary in the probability that it provided a highly preferred food type. To examine the impact of ambiguity on ape decision-making, we interspersed trials in which chimpanzees and bonobos had no knowledge about the probabilities. Both species avoided the ambiguous option compared with their choices for a risky option, indicating that ambiguity aversion is shared by humans, bonobos and chimpanzees.
Resumo:
Human and non-human animals tend to avoid risky prospects. If such patterns of economic choice are adaptive, risk preferences should reflect the typical decision-making environments faced by organisms. However, this approach has not been widely used to examine the risk sensitivity in closely related species with different ecologies. Here, we experimentally examined risk-sensitive behaviour in chimpanzees (Pan troglodytes) and bonobos (Pan paniscus), closely related species whose distinct ecologies are thought to be the major selective force shaping their unique behavioural repertoires. Because chimpanzees exploit riskier food sources in the wild, we predicted that they would exhibit greater tolerance for risk in choices about food. Results confirmed this prediction: chimpanzees significantly preferred the risky option, whereas bonobos preferred the fixed option. These results provide a relatively rare example of risk-prone behaviour in the context of gains and show how ecological pressures can sculpt economic decision making.
Resumo:
In sexually reproducing animals, male and female reproductive strategies often conflict. In some species, males use aggression to overcome female choice, but debate persists over the extent to which this strategy is successful. Previous studies of male aggression toward females among wild chimpanzees have yielded contradictory results about the relationship between aggression and mating behavior. Critically, however, copulation frequency in primates is not always predictive of reproductive success. We analyzed a 17-year sample of behavioral and genetic data from the Kasekela chimpanzee (Pan troglodytes schweinfurthii) community in Gombe National Park, Tanzania, to test the hypothesis that male aggression toward females increases male reproductive success. We examined the effect of male aggression toward females during ovarian cycling, including periods when the females were sexually receptive (swollen) and periods when they were not. We found that, after controlling for confounding factors, male aggression during a female's swollen periods was positively correlated with copulation frequency. However, aggression toward swollen females was not predictive of paternity. Instead, aggression by high-ranking males toward females during their nonswollen periods was positively associated with likelihood of paternity. This indicates that long-term patterns of intimidation allow high-ranking males to increase their reproductive success, supporting the sexual coercion hypothesis. To our knowledge, this is the first study to present genetic evidence of sexual coercion as an adaptive strategy in a social mammal.
Resumo:
In many mammals, early social experience is critical to developing species-appropriate adult behaviors. Although mother-infant interactions play an undeniably significant role in social development, other individuals in the social milieu may also influence infant outcomes. Additionally, the social skills necessary for adult success may differ between the sexes. In chimpanzees (Pan troglodytes), adult males are more gregarious than females and rely on a suite of competitive and cooperative relationships to obtain access to females. In fission-fusion species, including humans and chimpanzees, subgroup composition is labile and individuals can vary the number of individuals with whom they associate. Thus, mothers in these species have a variety of social options. In this study, we investigated whether wild chimpanzee maternal subgrouping patterns differed based on infant sex. Our results show that mothers of sons were more gregarious than mothers of daughters; differences were especially pronounced during the first 6 mo of life, when infant behavior is unlikely to influence maternal subgrouping. Furthermore, mothers with sons spent significantly more time in parties containing males during the first 6 mo. These early differences foreshadow the well-documented sex differences in adult social behavior, and maternal gregariousness may provide sons with important observational learning experiences and social exposure early in life. The presence of these patterns in chimpanzees raises questions concerning the evolutionary history of differential social exposure and its role in shaping sex-typical behavior in humans.