122 resultados para Carbonization.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Patent index": leaves 20 22.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon materials are found versatile and applicable in wide range of applications. During the recent years research of carbon materials has focussed on the search of environmentally friendly, sustainable, renewable and low-cost starting material sources as well as simple cost-efficient synthesis techniques. As an alternative synthesis technique in the production of carbon materials hydrothermal carbonization (HTC) has shown a great potential. Depending on the application HTC can be performed as such or as a pretreatment technique. This technique allows synthesis of carbon materials i.e. hydrochars in closed vessel in the presence of water and self-generated pressure at relatively low temperatures (180-250 ˚C). As in many applications well developed porosity and heteroatom distribution are in a key role. Therefore in this study different techniques e.g. varying feedstock, templating and post-treatment in order to introduce these properties to the hydrochars structure were performed. Simple monosaccharides i.e. fructose or glucose and more complex compounds such as cellulose and sludge were performed as starting materials. Addition of secondary precursor e.g. thiophenecarboxaldehyde and ovalbumin was successfully exploited in order to alter heteroatom content. It was shown that well-developed porosity (SBET 550 m2/g) can be achieved via one-pot approach (i.e. exploitation of salt mixture) without conventionally used post-carbonization step. Nitrogen-enriched hydrochars indicated significant Pb(II) and Cr(VI) removal efficiency of 240 mg/g and 68 mg/g respectively. Sulphur addition into carbon network was not found to have enhancing effect on the adsorption of methylene blue or change acidity of the carbon material. However, these hydrochars were found to remove 99.9 % methylene blue and adsorption efficiency of these hydrochars remained over 90 % even after regeneration. In addition to water treatment application N-rich high temperature treated carbon materials were proven applicable as electrocatalyst and electrocatalyst support. Hydrothermal carbonization was shown to be workable technique for the production of carbon materials with variable physico-chemical properties and therefore hydrochars could be applied in several different applications e.g. as alternative low-cost adsorbent for pollutant removal from water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper agricultural waste; Canarium schweinfurthii was explored for the sequestering of Fe and Pb ions from wastewater solution after carbonization and chemical treatment at 400oC. Optimum time of 30 and 150 min with percentage removal of 95 and 98% at optimum pH of 2 and 6 was obtained for Fe and Pb ions. Kinetics model followed pseudofirst order as sum of absolute error (EABS) between Qe and Qc greater than that of pseudo second order. Parameters evaluated from isothermal equation (Freundlich and Langmuir) showed that KL and QO for Fe > Pb and R2 for Langmuir> Freundlich. The study reveals the suitability of the adsorbent for sequestering of Fe and Pb ions from industrial wastewater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although hydrothermal carbonization of biomass components is known to be mainly governed by reaction temperature, consistent reports on the effect and statistical significance of process conditions on hydrochar properties are still lacking. The objective of this research was to determine the importance and significance of reaction temperature, retention time and solid load on the properties of hydrochar produced from an industrial lignocellulosic sludge residue. According to the results, reaction temperature and retention time had a statistically significant effect on hydrochar ash content, solid yield, carbon content, O/C-ratio, energy densification and energy yield as reactor solid load was statistically insignificant for all acquired models within the design range. Although statistically significant, the effect of retention time was 3–7 times lower than that of reaction temperature. Predicted dry ash-free solid yields of attained hydrochar decreased to approximately 40% due to the dissolution of biomass components at higher reaction temperatures, as respective oxygen contents were comparable to subbituminous coal. Significant increases in the carbon contents of hydrochar led to predicted energy densification ratios of 1–1.5 with respective energy yields of 60–100%. Estimated theoretical energy requirements of carbonization were dependent on the literature method used and mainly controlled by reaction temperature and reactor solid load. The attained results enable future prediction of hydrochar properties from this feedstock and help to understand the effect of process conditions on hydrothermal treatment of lignocellulosic biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the production of carbons materials with a nitrogen content around 8%(w/w) and a well-developed porous structure, with BET surface area and pore volume up to 2130 m2 g−1 and 1.12 cm3 g−1, respectively, produced by a combination of hydrothermal carbonization, an environmental friendly method in the production of sustainable tunable carbon materials, with traditional activation methods. The porosity was developed through an activation process according to different routes, namely activation with CO2 and chemical activation using CaCO3 and K2CO3. The successful production of activated carbons using chitosan as a nitrogen source revealed to be a good alternative to post-synthesis methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrothermal carbonization can be considered an environmental friendly process for the production of carbon materials with tailored properties, such as regular porous structure and specific surface chemistry. This process is easy to perform and uses mild temperatures without the use of solvents or gases, which results in a positive environmental balance when compared with the usual pyrolysis process [1]. Diabetes affects more than 152 million people in Europe and is on the rise all over the World. Metformin is one of the most used drugs to treat type 2 diabetes. This drug is an endocrine disruptor with a potential negative impact in the environment due to the fact that metformin is almost not metabolized in the human body and the incorrect disposal into the domestic garbage. Another relevant aspect is the danger of overdose intake of the drug that can lead to lactic acidosis, which in extreme cases can be lethal. The work now reported study the in vitro adsorption of metformin onto activated carbons using simulated gastric and intestinal fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From a mineralogical survey of approximately 30 chondritic micrometeorites collected from the lower stratosphere and studied in detail using current electron microscopy techniques, it is concluded that these particles represent a unique group of extraterrestrial materials. These micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class. Electron microscope investigations of chondritic micrometeorites have established that these materials (1) are extraterrestrial in origin, (2) existed in space as small objects, (3) endured minimal alteration by planetary processes since formation, and (4) can suffer minimal pulse heating (<600°C) on entering earth's atmosphere. The probable sources for chondritic interplanetary dust particles (IDPs) are cometary and asteroidal debris and, perhaps to a lesser extent, interstellar regions. These sources have not been conclusively linked to any specific mineralogical subset of IDP, although the chondritic porous (CP) aggregate is considered of likely cometary origin. Chondritic IDPs occur in two predominant mineral assemblages: (1) carbonaceous phases and phyllosilicates and (2) carbonaceous phases and nesosilicates or inosilicates, although particles with both types of silicate assemblages are observed. Olivines, pyroxenes, layer silicates, and carbon-rich phases are the most commonly occurring minerals in many chondritic IDPs. Other phases often observed in variable proportions include sulphides, spinels, metals, metal carbides, carbonates, and minor amounts of sulphates and phosphates. Individual mineral grain sizes range from micrometers (primarily pyroxenes and olivines) to nanometers, with the predominant size for all phases less than 100 nm. Specific mineral characteristics for particular chondritic IDPs provide an indication of processes which may have occurred prior to collection in the earth's stratosphere. For example, pyroxene mineralogy in some chondritic aggregates is consistent with condensation from a vapor phase and, we consider, with condensation in a turbulent solar nebula at relatively low temperatures (<1000°C). Carbonaceous phases present in other CP aggregates have been used to imply low-temperature formation processes such as Fischer-Tropsch synthesis (∼530°C) or carbonization and graphitization (∼315°C). Alteration processes have been implicated in the formation of some layer silicates in CP aggregates and may have involved hydrocryogenic alteration at <0°C. In general, interpretations of transformation processes on submicrometer-size minerals in chondritic IDPs are consistent with formation at a radius equivalent to the asteroid belt or greater during the later stages of solar nebula evolution using currently available models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of carbonaceous matter in primitive extraterrestrial materials is an essential component of studies on dust evolution in the interstellar medium and the early history of the Solar System. We have suggested previously that a record of graphitization is preserved in chondritic porous (CP) aggregates and carbonaceous chondrites1,2 and that the detailed mineralogy of CP aggregates can place boundary conditions on the nature of both physical and chemical processes which occurred at the time of their formation2,3. Here, we report further analytical electron microscope (AEM) studies on carbonaceous material in two CP aggregates which suggest that a record of hydrocarbon carbonization may also be preserved in these materials. This suggestion is, based upon the presence of well-ordered carbon-2H (lonsdaleite) in CP aggregates W7029*A and W7010*A2. This carbon is a metastable phase resulting from hydrous pyrolysis below 300-350°C and may be a precursor to poorly graphitized carbons (PGCs) in primitive extraterrestrial materials2. © 1987 Nature Publishing Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5nm to 7μm. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250nm to 7μm and 5 to 10nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD4, at ambient temperature. In some coals most of the small (~10nm) pores were found to be inaccessible to CD4 on the time scale of the measurement (~30min–16h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total pores that was inaccessible was not rank dependent. In the Australian coals, at the 10nm to 50nm size scales the pores in inertinites appeared to be completely accessible to CD4, whereas the pores in the vitrinite were about 75% inaccessible. Unlike the results for total porosity that showed no regional effects on relationships between porosity and coal properties, clear regional differences in the relationships between fraction of closed porosity and coal properties were found. The 10 to 50nm-sized pores of inertinites of the US and Polish coals examined appeared less accessible to methane than those of the inertinites of Australian coals. This difference in pore accessibility in inertinites may explain why empirical relationships between fluidity and coking properties developed using Carboniferous coals do not apply to Australian coals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adsorption has been considered as an efficient method for the treatment of dye effluents, but properdisposal of the spent adsorbents is still a challenge. This work attempts to provide a facile methodto reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II(OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washedwith acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that thecarbonization could be well achieved above 600◦C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000 ◦C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption–desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m2/g and 1.67 cm3/g for the sample carbonized at 800 ◦C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoporous carbon (NPC) materials with high specific surface area have attracted considerable attention for electrochemical energy storage applications. In the present work, we have designed novel symmetric supercapacitors based on NPC by direct carbonization of Zn-based metal-organic frameworks (MOFs) without using an additional precursor. By controlling the reaction conditions in the present study, we synthesized NPC with two different particle sizes. The effects of particle size and mass loadings on supercapacitor performance have been carefully evaluated. Our NPC materials exhibit excellent electrochemical performance with a maximum specific capacitance of 251 F g-1 in 1 M H2SO4 electrolyte. The symmetric supercapacitor studies show that these efficient electrodes have good capacitance, high stability, and good rate capability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molybdenum carbide (MoC) and tungsten carbide (WC) are synthesized by direct carbonization method. PtRu catalysts supported on MoC, WC, and Vulcan XC-72R are prepared, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy in conjunction with electrochemistry. Electrochemical activities for the catalysts towards methanol electro-oxidation are studied by cyclic voltammetry. All the electro-catalysts are subjected to accelerated durability test (ADT). The electrochemical activity of carbide-supported electro-catalysts towards methanol electro-oxidation is found to be higher than carbon-supported catalysts before and after ADT. The study suggests that PtRu/MoC and PtRu/WC catalysts are more durable than PtRu/C. Direct methanol fuel cells (DMFCs) with PtRu/MoC and PtRu/WC anodes also exhibit higher performance than the DMFC with PtRu/C anode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of THF coordinated aluminium nanoparticles by the solvated metal atom dispersion (SMAD) method is described. These colloids are not stable with respect to precipitation of aluminium nanoparticles. The precipitated aluminium nanopowder is highly pyrophoric. Highly monodisperse colloidal aluminium nanoparticles (3.1 +/- 0.6 nm) stabilized by a capping agent, hexadecyl amine (HDA), have also been prepared by the SMAD method. They are stable towards precipitation of particles for more than a week. The Al-HDA nanoparticles are not as pyrophoric as the Al-THF samples. Particles synthesized in this manner were characterized by high-resolution electron microscopy and powder X-ray diffraction. Annealing of the Al-HDA nanoparticles resulted in carbonization of the capping agent on the surface of the particles which imparts air stability to them. Carbonization of the capping agent was established using Raman spectroscopy and TEM. The annealed aluminium nanoparticles were found to be stable even upon their exposure to air for over a month which was evident from the powder XRD, TGA/DSC, and TEM studies. The successful passivation was further confirmed with the determination of high active aluminium content (95 wt%) upon exposure and storage under air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport.