988 resultados para Carbonate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Production of nanofibrous polyacrylonitrile/calcium carbonate (PAN/CaCO3) nanocomposite web was carried out through solution electrospinning process. Pore generating nanoparticles were leached from the PAN matrices in hydrochloric acid bath with the purpose of producing an ultimate nanoporous structure. The possible interaction between CaCO3 nanoparticles and PAN functional groups was investigated. Atomic absorption method was used to measure the amount of extracted CaCO3 nanoparticles. Morphological observation showed nanofibers of 270–720 nm in diameter containing nanopores of 50–130 nm. Monitoring the governing parameters statistically, it was found that the amount of extraction (ε) of CaCO3was increased when the web surface area (a) was broadened according to a simple scaling law (ε = 3.18 a0.4). The leaching process was maximized in the presence of 5% v/v of acid in the extraction bath and 5 wt % of CaCO3 in the polymer solution. Collateral effects of the extraction time and temperature showed exponential growth within a favorable extremum at 50°C for 72 h. Concentration of dimethylformamide as the solvent had no significant impact on the extraction level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract An assessment of the molecular structure of carletonite a rare phyllosilicate mineral with general chemical formula given as KNa4Ca4Si8O18(CO3)4(OH,F)·H2O has been undertaken using vibrational spectroscopy. Carletonite has a complex layered structure. Within one period of c, it contains a silicate layer of composition NaKSi8O18·H2O, a carbonate layer of composition NaCO3·0.5H2O and two carbonate layers of composition NaCa2CO3(F,OH)0.5. Raman bands are observed at 1066, 1075 and 1086 cm−1. Whether these bands are due to the CO32- ν1 symmetric stretching mode or to an SiO stretching vibration is open to question. Multiple bands are observed in the 300–800 cm−1 spectral region, making the attribution of these bands difficult. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate and carbonate surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ancient sandstones include important reservoirs for hydrocarbons (oil and gas), but, in many cases, their ability to serve as reservoirs is heavily constrained by the effects of carbonate cements on porosity and permeability. This study investigated the controls on distribution and abundance of carbonate cements within the Jurassic Plover Formation, Browse Basin, North West Shelf, Australia. Samples were analysed petrographically with point counting of 59 thin sections and mineralogically with x-ray diffraction from two wells within the Torosa Gas Field. Selected samples were also analysed for stable isotopes of O and C. Sandstones are classified into eleven groups. Most abundant are quartzarenites and then calcareous quartzarenites. Lithology ranged between sandstones consisting of mostly quartz with scant or no carbonate in the form of cement or allochems, to sandstones with as much as 40% carbonate. The major sources of carbonate cement in Torosa 1 and Torosa 4 sandstones were found to be early, shallow marine diagenetic processes (including cementation), followed by calcite cementation and recrystallisation of cements and allochems during redistribution by meteoric waters. Blocky and sparry calcite cements, indicative of meteoric environments on the basis of stable isotope values and palaeotemperature assessment, overprinted the initial shallow marine cement phase in all cases and meteoric cements are dominant. Torosa 4 was influenced more by marine settings than Torosa 1, and thus has the greater potential for calcite cement. The relatively low compaction of calcite-cemented sandstones and the stable isotope data suggest deep burial cementation was not a major factor. Insufficient volcanic rock fragments or authigenic clay content infers alteration of feldspars was not a major source of calcite. Very little feldspar is present, altered or otherwise. Hence, increased alkalinity from feldspar dissolution is not a contributing factor in cement formation. Increased alkalinity from bacterial sulphate reduction in organic–rich fine sediments may have driven limited cementation in some samples. The main definable and significant source of diagenetic marine calcite cement originated from original marine cements and the nearby dissolution of biogenic sources (allochems) at relatively shallow depths. Later diagenetic fluids emplaced minor dolomite, but this cement did not greatly affect the reservoir quality in the samples studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral huanghoite with possible formula given as BaCe(CO3)2F and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of huanghoite displays three bands are at 1072, 1084 and 1091 cm−1 attributed to the symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of symmetric stretching vibration varies with mineral composition. Infrared spectroscopy of huanghoite show bands at 1319, 1382, 1422 and 1470 cm−1. No Raman bands of huanghoite were observed in these positions. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1 assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands for huanghoite are observed at 687, 704, 718 and 730 cm−1and assigned to the (CO3)2− ν2 bending modes. Raman bands are observed for huanghoite at around 627 cm−1 and are assigned to the (CO3)2− ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite, 714 cm−1 for northupite. Raman bands for huanghoite observed at 3259, 3484 and 3589 cm−1 are attributed to water stretching bands. Multiple bands are observed in the OH stretching region for bastnasite and parisite indicating the presence of water and OH units in their mineral structure. Vibrational spectroscopy enables new information on the structure of huanghoite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature lignocellulose pretreatment process was developed using acid-catalysed mixtures of alkylene carbonate and alkylene glycol. Pretreatment of sugarcane bagasse with mixtures of ethylene carbonate (EC) and ethylene glycol (EG) was more effective than that with mixtures of propylene carbonate (PC) and propylene glycol (PG). These mixtures were more effective than the individual components in making bagasse cellulose more amenable to cellulase digestion. Glucan digestibilities of ≥87% could be achieved with a wide range of EC to EG ratios from 9:1 to 1:1 (w/w). Pretreatment of bagasse by the EC/EG mixture with a ratio of 4:1 in the presence of 1.2% H2SO4 at 90 °C for 30 min led to the highest glucan enzymatic digestibility of 93%. The high glucan digestibilities obtained under these acidic conditions were due to (a) the ability of alkylene carbonate to cause significant biomass size reduction, (b) the ability of alkylene glycol to cause biomass defibrillation, (c) the ability of alkylene carbonate and alkylene glycol to remove xylan and lignin, and (d) the magnified above attributes in the mixtures of alkylene carbonate and alkylene glycol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of suitable tissue to replace natural blood vessels requires a degradable scaffold material that is processable into porous structures with appropriate mechanical and cell growth properties. This study investigates the fabrication of degradable, crosslinkable prepolymers of l-lactide-co-trimethylene carbonate into porous scaffolds by electrospinning. After crosslinking by γ-radiation, dimensionally stable scaffolds were obtained with up to 56% trimethylene carbonate incorporation. The fibrous mats showed Young’s moduli closely matching human arteries (0.4–0.8 MPa). Repeated cyclic extension yielded negligible change in mechanical properties, demonstrating the potential for use under dynamic physiological conditions. The scaffolds remained elastic and resilient at 30% strain after 84 days of degradation in phosphate buffer, while the modulus and ultimate stress and strain progressively decreased. The electrospun mats are mechanically superior to solid films of the same materials. In vitro, human mesenchymal stem cells adhered to and readily proliferated on the three-dimensional fiber network, demonstrating that these polymers may find use in growing artificial blood vessels in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of copolymers of trimethylene carbonate (TMC) and l-lactide (LLA) were synthesized and evaluated as scaffolds for the production of artificial blood vessels. The polymers were end-functionalized with acrylate, cast into films, and cross-linked using UV light. The mechanical, degradation, and biocompatibility properties were evaluated. High TMC polymers showed mechanical properties comparable to human arteries (Young’s moduli of 1.2–1.8 MPa and high elasticity with repeated cycling at 10% strain). Over 84 days degradation in PBS, the modulus and material strength decreased gradually. The polymers were nontoxic and showed good cell adhesion and proliferation over 7 days using human mesenchymal stem cells. When implanted into the rat peritoneal cavity, the polymers elicited formation of tissue capsules composed of myofibroblasts, resembling immature vascular smooth muscle cells. Thus, these polymers showed properties which were tunable and favorable for vascular tissue engineering, specifically, the growth of artificial blood vessels in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 nanofibers with different crystal phases have been discovered to be efficient catalysts for the transesterification of alcohols with dimethyl carbonate to produce corresponding methyl carbonates. Advantages of this catalytic system include excellent selectivity (>99%), general suitability to alcohols, reusability and ease of preparation and separation of fibrous catalysts. Activities of TiO2 catalysts were found to correlate with their crystal phases which results in different absorption abilities and activation energies on the catalyst surfaces. The kinetic isotope effect (KIE) investigation identified the rate-determining step, and the isotope labeling of oxygen-18 of benzyl alcohol clearly demonstrated the reaction pathway. Finally, the transesterification mechanism of alcohols with dimethyl carbonate catalyzed by TiO2 nanofibers was proposed, in which the alcohol released the proton to form benzyl alcoholic anion, and subsequently the anion attacks the carbonyl carbon of dimethyl carbonate to produce the target product of benzyl methyl carbonate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. We have previously reported an effective low temperature (90 °C) process at atmospheric pressure for pretreatment of sugarcane bagasse with acidified mixtures of ethylene carbonate (EC) and ethylene glycol (EG). In this study, “greener” solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. Results Pretreatment of sugarcane bagasse at 90 °C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified EC. Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity. Conclusions Acidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained with GC-pretreated bagasse is possibly due to the presence of one hydroxyl group in the GC molecular structure, resulting in more significant biomass delignification and defibrillation, though both solvent pretreatments reduced bagasse particles to a similar extent. The maximum glucan digestibility of GC/glycerol systems was less than that of EC/EG systems, which is likely attributed to glycerol being less effective than EG in biomass delignification and defibrillation. Acidified AC/AG solvent systems were more effective for pretreatment of lignin-containing biomass than MCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of poly(acrylic acid) (PAA) with different end groups and molar masses prepared by Atom Transfer Radical Polymerization (ATRP) to inhibit the formation of calcium carbonate scale at low and elevated temperatures was investigated. Inhibition of CaCO3 deposition was affected by the hydrophobicity of the end groups of PAA, with the greatest inhibition seen for PAA with hydrophobic end groups of moderate size (6–10 carbons). The morphologies of CaCO3 crystals were significantly distorted in the presence of these PAAs. The smallest morphological change was in the presence of PAA with long hydrophobic end groups (16 carbons) and the relative inhibition observed for all species were in the same order at 30 °C and 100 °C. As well as distorting morphologies, the scale inhibitors appeared to stabilize the less thermodynamically favorable polymorph, vaterite, to a degree proportional to their ability to inhibit precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burkeite formation is important in saline evaporites and in pipe scales. Burkeite is an anhydrous sulphate-carbonate with an apparent variable anion ratio. Such a formula with two oxyanions lends itself to vibrational spectroscopy. Two symmetric sulphate stretching modes are observed, indicating at least at the molecular level the nonequivalence of the sulphate ions in the burkeite structure. The strong Raman band at 1065 cm−1 is assigned to the carbonate symmetric stretching vibration. The series of Raman bands at 622, 635, 645, and 704 cm−1 are assigned to the ν4 sulphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from T d to C 3v or even C 2v.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral aerinite is an interesting mineral because it contains both silicate and carbonate units which is unusual. It is also a highly colored mineral being bright blue/purple. We have studied aerinite using a combination of techniques which included scanning electron microscopy, energy dispersive X-ray analysis, Raman and infrared spectroscopy. Raman bands at 1049 and 1072 cm−1 are assigned to the carbonate symmetric stretching mode. This observation supports the concept of the non-equivalence of the carbonate units in the structure of aerinite. Multiple infrared bands at 1354, 1390 and 1450 cm−1 supports this concept. Raman bands at 933 and 974 cm−1 are assigned to silicon–oxygen stretching vibrations. Multiple hydroxyl stretching and bending vibrations show that water is in different molecular environments in the aerinite structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Late Sakmarian to early Artinskian (Early Permian) carbonate deposition was widespread in the marine intracratonic rift basins that extended into the interior of Eastern Gondwana from Timor in the north to the northern Perth Basin in the south. These basins spanned about 20° of paleolatitude (approximately 35°S to 55°S). This study describes the type section of the Maubisse Limestone in Timor-Leste, and compares this unit with carbonate sections in the Canning Basin (Nura Nura Member of the Poole Sandstone), the Southern Carnarvon Basin (Callytharra Formation) and the northern Perth Basin (Fossil Cliff Member of the Holmwood Shale). The carbonate units have no glacial influence and formed part of a major depositional cycle that, in the southern basins, overlies glacially influenced strata and lies a short distance below mudstone containing marine fossils and scattered dropstones (perhaps indicative of sea ice). In the south marine conditions became more restricted and were replaced by coal measures at the top of the depositional sequence. In the north, the carbonate deposits are possibly bryozoan–crinoidal mounds; whereas in the southern basins they form laterally continuous relatively thin beds, deposited on a very low-gradient seafloor, at the tops of shale–limestone parasequences that thicken upward in parasequence sets. All marine deposition within the sequence took place under very shallow (inner neritic) conditions, and the limestones have similar grain composition. Bryozoan and crinoidal debris dominate the grain assemblages and brachiopod shell fragments, foraminifera and ostracod valves are usually common. Tubiphytes ranged as far south as the Southern Carnarvon Basin, albeit rarely, but is more common to the north. Gastropod and bivalve shell debris, echinoid spines, solitary rugose corals and trilobite carapace elements are rare. The uniformity of the grain assemblage and the lack of tropical elements such as larger fusulinid foraminifera, colonial corals or dasycladacean algae indicate temperate marine conditions with only a small increase in temperature to the north. The depositional cycle containing the studied carbonate deposits represents a warmer phase than the preceding glacially influenced Asselian to early Sakmarian interval and the subsequent cool phase of the “mid” Artinskian that is followed by significant warming during the late Artinskian–early Kungurian. The timing of cooler and warmer intervals in the west Australian basins seems out-of-phase with the eastern Australian succession, but this may be a problem of chronostratigraphic miscorrelation due to endemic faunas and palynofloras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intrinsic exposed core optical fiber sensor (IECOFS) made from fused silica was used to monitor the crystallization of calcium carbonate (CaCO3) and CaCO3/calcium sulfate (CaSO4) composite at 100 and 120 °C in the absence and presence of low-molar-mass (Mn ≤ 2000) poly(acrylic acid) (PAA) with different end groups. The IECOFS responded only to deposition and growth processes on the fiber surface rather than changes occurring in the bulk of the solution. Hexyl isobutyrate-terminated PAA (Mn = 1400) and hexadecyl isobutyrate-terminated PAA (Mn = 1700) were the most effective species in preventing CaCO3 deposition. Phase transformation from vaterite to aragonite/calcite decreased with increasing hydrophobicity of the PAA end group. Low-molar-mass PAA at 10 ppm showed very significant inhibition of CaCO3/CaSO4 composite formation for all end groups investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of decomposition of the carbonate Sr2Zr2O5CO3, are greatly influenced by the thermal effects during its formation. (α−t) curves are found to be sigmoidal and they could be analysed based on power law equations followed by first-order decay. The presence of carbon in the vacuum-prepared sample of carbonate has a strong deactivating effect. The carbonate is fairly crystalline and its decomposition leads to the formation of crystalline strontium zirconate.