954 resultados para Carbon sequestration
Resumo:
Nitrogen deposition experiments were carried out in alpine meadow ecosystems in Qinghai-Xizang Plateau in China, in order to explore the contribution of nitrogen deposition to carbon sequestration in alpine meadows. Two methods were used in this respect. First, we used the allocation of N-15 tracer to soil and plant pools. Second, we used increased root biomass observed in the nitrogen-amended plots. Calculating enhanced carbon storage, we considered the net soil CO2 emissions exposed to nitrogen deposition in alpine meadows. Our results show that nitrogen deposition can enhance the net soil CO2 emissions, and thus offset part of carbon uptake by vegetation and soils. It means that we have to be cautious to draw a conclusion when we estimate the contribution of nitrogen deposition to carbon sequestration based on the partitioning of N-15 tracer in terrestrial ecosystems, in particular in N-limited ecosystems. Even if we assess the contribution of nitrogen deposition to carbon sequestration based on increased biomass exposed to nitrogen deposition in terrestrial ecosystems, likewise, we have to consider the effects of nitrogen deposition on the soil CO2 emissions.
Resumo:
The possibility of encouraging the growth of forests as a means of sequestering carbon dioxide has received considerable attention, partly because of evidence that this can be a relatively inexpensive means of combating climate change. But how sensitive are such estimates to specific conditions? We examine the sensitivity of carbon sequestration costs to changes in critical factors, including the nature of management and deforestation regimes, silvicultural species, relative prices, and discount rates. (C) 2000 Academic Press.
Resumo:
Soils represent a large carbon pool, approximately 1500 Gt, which is equivalent to almost three times the quantity stored in terrestrial biomass and twice the amount stored in the atmosphere. Any modification of land use or land management can induce variations in soil carbon stocks, even in agricultural systems that are perceived to be in a steady state. Tillage practices often induce soil aerobic conditions that are favourable to microbial activity and may lead to a degradation of soil structure. As a result, mineralisation of soil organic matter increases in the long term. The adoption of no-tillage systems and the maintenance of a permanent vegetation cover using Direct seeding Mulch-based Cropping system or DMC, may increase carbon levels in the topsoil. In Brazil, no-tillage practices (mainly DMC), were introduced approximately 30 years ago in the south in the Parana state, primarily as a means of reducing erosion. Subsequently, research has begun to study the management of the crop waste products and their effects on soil fertility, either in terms of phosphorus management, as a means of controlling soil acidity, or determining how manures can be applied in a more localised manner. The spread of no-till in Brazil has involved a large amount of extension work. The area under no-tillage is still increasing in the centre and north of the country and currently occupies ca. 20 million hectares, covering a diversity of environmental conditions, cropping systems and management practices. Most studies of Brazilian soils give rates of carbon storage in the top 40 cm of the soil of 0.4 to 1.7 t C ha(-1) per year, with the highest rates in the Cerrado region. However, caution must be taken when analysing DMC systems in terms of carbon sequestration. Comparisons should include changes in trace gas fluxes and should not be limited to a consideration of carbon storage in the soil alone if the full implications for global warming are to be assessed.
Resumo:
Global agreements have proliferated in the past ten years. One of these is the Kyoto Protocol, which contains provisions for emissions reductions by trading carbon through the Clean Development Mechanism (CDM). The CDM is a market-based instrument that allows companies in Annex I countries to offset their greenhouse gas emissions through energy and tree offset projects in the global South. I set out to examine the governance challenges posed by the institutional design of carbon sequestration projects under the CDM. I examine three global narratives associated with the design of CDM forest projects, specifically North – South knowledge politics, green developmentalism, and community participation, and subsequently assess how these narratives match with local practices in two projects in Latin America. Findings suggest that governance problems are operating at multiple levels and that the rhetoric of global carbon actors often asserts these schemes in one light, while the rhetoric of those who are immediately involved locally may be different. I also stress the alarmist’s discourse that blames local people for the problems of environmental change. The case studies illustrate the need for vertical communication and interaction and nested governance arrangements as well as horizontal arrangements. I conclude that the global framing of forests as offsets requires better integration of local relationships to forests and their management and more effective institutions at multiple levels to link the very local to the very large scale when dealing with carbon sequestration in the CDM.
Resumo:
Transformation of the south-western Australian landscape from deep-rooted woody vegetation systems to shallow-rooted annual cropping systems has resulted in the severe loss of biodiversity and this loss has been exacerbated by rising ground waters that have mobilised stored salts causing extensive dry land salinity. Since the original plant communities were mostly perennial and deep rooted, the model for sustainable agriculture and landscape water management invariably includes deep rooted trees. Commercial forestry is however only economical in higher rainfall (>700 mm yr−1) areas whereas much of the area where biodiversity is threatened has lower rainfall (300–700 mm yr−1). Agroforestry may provide the opportunity to develop new agricultural landscapes that interlace ecosystem services such as carbon mitigation via carbon sequestration and biofuels, biodiversity restoration, watershed management while maintaining food production. Active markets are developing for some of these ecosystem services, however a lack of predictive metrics and the regulatory environment are impeding the adoption of several ecosystem services. Nonetheless, a clear opportunity exists for four major issues – the maintenance of food and fibre production, salinisation, biodiversity decline and climate change mitigation – to be managed at a meaningful scale and a new, sustainable agricultural landscape to be developed.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2008/1001/thumbnail.jpg
Resumo:
The present paper reports the assessment of the vegetation occupancy rate of the roadside, through analysis of aerial photographs. Using such value the potential of these areas to be employed as carbon (C) sinks was also assessed. Moreover, for the areas suitable for afforestation, the potential for carbon sequestration was estimated considering different species of vegetation, both native (scenario 1) and exotic (formed by Pinus sp. and Eucalyptus sp. - scenario 2). The study was carried out through GIS techniques and two regions were considered. A set of equations was used to estimate the rate of occupancy over the study areas, as well as amounts of fixed C under the above scenarios. The average occupancy rate was 0.06%. The simulation showed a higher potential for C sequestration in scenario 2, being the estimated amounts of CO(2) sequestered from the atmosphere per km of roadside: 131 tons of CO(2) km(-1) of highway to native species and 655 tons of CO(2) km(-1) of highway for exotic species (over period of 10 years for both estimates). If we consider the whole road network of the São Paulo State (approximately 190 000 km) and that a considerable part of this road work is suitable to receive this kind of service, it is possible to predict the very high potential for C sequestration if managers and planners consider roadside as area for afforestation.
Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration
Resumo:
Large-scale soil application of biochar may enhance soil fertility, increasing crop production for the growing human population, while also sequestering atmospheric carbon. But reaching these beneficial outcomes requires an understanding of the relationships among biochar's structure, stability, and contribution to soil fertility. Using quantitative C-13 nuclear magnetic resonance (NMR) spectroscopy, we show that Terra Preta soils (fertile anthropogenic dark earths in Amazonia that were enriched with char >800 years ago) consist predominantly of char residues composed of similar to 6 fused aromatic rings substituted by COO- groups that significantly increase the soils' cation-exchange capacity and thus the retention of plant nutrients. We also show that highly productive, grassland-derived soils in the U.S, (Mollisols) contain char (generated by presettlement fires) that is structurally comparable to char in the Terra Preta soils and much more abundant than previously thought (similar to 40-50% of organic C). Our findings indicate that these oxidized char residues represent a particularly stable, abundant, and fertility-enhancing form of soil organic matter.
Resumo:
Studies on soil organic carbon (SOC) sequestration in perennial energy crops are available for North-Central Europe, while there is insufficient information for Southern Europe. This research was conducted in the Po Valley, a Mediterranean-temperate zone characterised by low SOC levels, due to intensive management. The aim was to assess the factors influencing SOC sequestration and its distribution through depth and within soil fractions, after a 9-year old conversion from two annual systems to Miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax). The 13C natural abundance was used to evaluate the amount of SOC in annual and perennial species, and determine the percentage of carbon derived from perennial crops. SOC was significantly higher under perennial species, especially in the topsoil (0-0.15 m). After 9 years, the amount of C derived from Miscanthus was 18.7 Mg ha-1, mostly stored at 0-0.15 m, whereas the amount of C derived from giant reed was 34.7 Mg ha-1, evenly distributed through layers. Physical soil fractionation was combined with 13C abundance analysis. C derived from perennial crops was mainly found in macroaggregates. Under giant reed, more newly derived-carbon was stored in microaggregates and mineral fraction than under Miscanthus. A molecular approach based on denaturing gradient gel electrophoresis (DGGE) allowed to evaluate changes on microbial community, after the introduction of perennial crops. Functional aspects were investigated by determining relevant soil enzymes (β-glucosidase, urease, alkaline phosphatase). Perennial crops positively stimulated these enzymes, especially in the topsoil. DGGE profiles revealed that community richness was higher in perennial crops; Shannon index of diversity was influenced only by depth. In conclusion, Miscanthus and giant reed represent a sustainable choice for the recovery of soils exhausted by intensive management, also in Mediterranean conditions and this is relevant mainly because this geographical area is notoriously characterised by a rapid turnover of SOC.
Resumo:
Rangelands store about 30% of the world’s carbon and support over 120 million pastoralists globally. Adjusting the management of remote alpine pastures bears a substantial climate change mitigation potential that can provide livelihood support for marginalized pastoralists through carbon payment. Landless pastoralists in Northern Pakistan seek higher income by cropping potatoes and peas over alpine pastures. However, tilling steep slopes without terracing exposes soil to erosion. Moreover, yields decline rapidly requiring increasing fertilizer inputs. Under these conditions, carbon payment could be a feasible option to compensate pastoralists for renouncing hazardous cropping while favoring pastoral activities. The study quantifies and compares C on cropped and grazed land. The hypothesis was that cropping on alpine pastures reduces former carbon storage. The study area located in the Naran valley of the Pakistani Himalayas receives an annual average of 819 mm of rain and 764 mm of snow. Average temperatures remain below 0°C from November to March while frost may occur all year round. A total of 72 soil core samples were collected discriminating land use (cropping, pasture), aspect (North, South), elevation (low 3000, middle 3100, and high 3200 m a.s.l.), and soil depth (shallow 0-10, deep 10-30 cm). Thirty six biomass samples were collected over the same independent variables (except for soil depth) using a 10x10x20 cm steal box inserted in the ground for each sample. Aboveground biomass and coarse roots were separated from the soil aggregate and oven-dried. Soil organic carbon (SOC) and biomass carbon (BC) were estimated through a potassium dichromate oxidation treatment. The samples were collected during the second week of October 2010 at the end of the grazing and cropping season and before the first snowfall. The data was statistically analyzed by means of a one-way analysis of variance. Results show that all variables taken separately have a significant effect on mean SOC [%]: crop/pasture 1.33/1.6, North/South 1.61/1.32, low/middle/high 1.09/1.62/1.68, shallow/deep 1.4/1.53. However, for BC, only land use has a significant effect with more than twice the amount of carbon in pastures [g m-2]: crop/pasture 127/318. These preliminary findings suggest that preventing the conversion of pastures into cropping fields in the Naran valley avoids an average loss of 12.2 t C ha-1 or 44.8 t CO2eq ha-1 representing a foreseeable compensation of 672 € ha-1 for the Naran landless pastoralists who would renounce cropping. The ongoing study shall provide a complete picture for carbon payment integrating key aspects such as the rate of cropping encroachment over pastures per year, the methane leakage from the system due to livestock enteric fermentation, the expected cropping income vs. livestock income and the transaction costs of implementing the mitigation project, certifying it, and verifying carbon credits. A net present value over an infinite time horizon for the mitigation scenario shall be estimated on an iterative simulation to consider weather and price uncertainties. The study will also provide an estimate of the minimum price of carbon at which pastoralists would consider engaging in the mitigation activity.
Resumo:
The Big Sky Carbon Sequestration Partnership examines the ability of geologic systems to safely trap anthropogenic carbon dioxide to mitigate its impact on climate. One such system is the Duperow Formation within Kevin Dome, a large sedimentary trap and cap structure that has a long history of oil and gas production. To test storage potential of the dome, naturally trapped carbon dioxide is extracted, compressed, and reinjected. Geophysical methods and monitoring wells provide evidence of the fate and transport of the re-injected carbon dioxide. This study and others like it demonstrate the efficacy carbon sequestration at an industrial scale.
Resumo:
Carbon sequestration in community forests presents a major challenge for the Reducing Emissions from Deforestation and Forest Degradation (REDD+) programme. This article uses a comparative analysis of the agricultural and forestry practices of indigenous peoples and settlers in the Bolivian Amazon to show how community-level institutions regulate the trade-offs between community livelihoods, forest species diversity, and carbon sequestration. The authors argue that REDD+ implementation in such areas runs the risk of: 1) reinforcing economic inequalities based on previous and potential land use impacts on ecosystems (baseline), depending on the socio-cultural groups targeted; 2) increasing pressure on land used for food production, possibly reducing food security and redirecting labour towards scarce off-farm income opportunities; 3) increasing dependence on external funding and carbon market fluctuations instead of local production strategies; and 4) further incentivising the privatization and commodification of land to avoid transaction costs associated with collective property rights. The article also advises against taking a strictly economic, market-based approach to carbon sequestration, arguing that such an approach could endanger fragile socio-ecological systems. REDD+ schemes should directly support existing efforts towards forest sustainability rather than simply compensating local land users for avoiding deforestation and forest degradation
Resumo:
We examined high-resolution cross-shelf distributions of particulate organic carbon (POC) and dissolved O(2) during the upwelling season off the Oregon coast. Oxygen concentrations were supersaturated in surface waters, and hypoxic in near-bottom waters, with greatly expanded hypoxic conditions late in the season. Simplified time-dependent mass balances on cross-shelf integrated concentrations of these two parameters, found the following: ( 1) The average net rate of photosynthesis generated 2.1 mmol O(2) m(-3) d(-1) and ( 2) essentially none of the corresponding net carbon fixation of 1.4 mmol m(-3) d(-1) could be accounted for in the observed standing stocks of POC. After examining other possible sinks for carbon, we conclude that most of the net production is being exported to the adjacent deep ocean. A simplified POC budget suggests that about a quarter of the export is via alongshore advection, and the remainder is due to some other process. We propose a simplistic conceptual model of across-shelf transport in which POC sinks to the bottom boundary layer where it comes into contact with mineral ballast material but is kept in suspension by high turbulence. When upwelling conditions ease, the BBL waters move seaward, carrying the suspended, ballasted POC with it where it sinks rapidly into the deep ocean at the shelf break. This suggests a mechanism whereby the duration and frequency of upwelling events and relaxations can determine the extent to which new carbon produced by photosynthesis in the coastal ocean is exported to depth rather than being respired on the shelf.