986 resultados para Carbon paste sensor
Resumo:
The use of carbon paste electrodes (CPE) of mineral sulfides can be useful for electrochemical studies to overcome problems by using massive ones. Using CPE-chalcopyrite some variables were electrochemically evaluated. These variables were: (i) the atmosphere of preparation (air or argon) of CPE and elapsed time till its use; (ii) scan rate for voltammetric measurements and (iii) chalcopyrite concentration in the CPE. Based on cyclic voltammetry, open-circuit potential and electrochemical impedance results the recommendations are: oxygen-free atmosphere to prepare and kept the CPE until around two ours, scan rates from 10 to 40 mV s-1, and chalcopyrite concentrations > 20%.
Resumo:
In this paper, a silica-gel-modified carbon paste electrode (Si-gel/CPE) was used to determine the anti-cancer drug emodin by anodic stripping differential pulse voltammetry (ASDPV). The effects of the silica-gel content, the pH of the supporting electrolyte, and the scan rate on the oxidation current of emodin were investigated. The oxidation currents of emodin obtained from ASDPV measurements were linearly correlated with the concentration in the range of 5.0 × 10-9 to 300.0 × 10-9 mol L-1. The limit of detection was determined to be 1.5 × 10-9 mol L-1. The current method was successfully applied to determine emodin in a knotweed root sample, with recovery rate of 92.5% to 98.3%.
Resumo:
The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol for determination of Cu(II) ions in sugar cane spirit (cachaça) is described, based on differential pulse anodic stripping voltammetry (DPASV) procedure. The Cu(II) oxidation peak was observed at 0.03 V (vs. SCE) in phosphate solution (pH 3.0). The results were obtained using optimised conditions such as 100 mV pulse amplitude, 3 min accumulation time, 25 mV s-1 scan rate in phosphate solution pH 3.0, resulting in a linear dynamic range from 8.0 x 10-7 to 1.0 x 10-5 mol L-1 Cu(II) and a limit of detection 2.0 x10-7 mol L-1. Cu(II) spiked in a cachaça sample was determined with 102.5 % mean recovery at mmol L-1 level. Interference from other metallic cations present in the sample was avoided by the standard addition procedure.
Resumo:
PVC supported liquid membrane and carbon paste potentiometric sensors incorporating an Mn(III)-porphyrin complex as a neutral host molecule were developed for the determination of paracetamol. The measurements were carried out in solution at pH 5.5. Under such conditions paracetamol exists as a neutral molecule. The mechanism of molecular recognition between the Mn(III)-porphyrin and paracetamol, leading to potentiometric signal generation, is discussed.The sensitivity and selectivity toward paracetamol of carbon paste and polymeric liquid membrane electrodes incorporating an Mn(III)-porphyrin host were compared. The applicability of these sensors to the direct determination of paracetamol was checked by performing a recovery test in human plasma.
Resumo:
The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol in the simultaneous determination of Pb(II), Cu(II) and Hg(II) ions in natural water and sugar cane spirit (cachaca) is described. Pb(II), Cu(II) and Hg(II) were pre-concentrated on the surface of the modified electrode by complexing with 2-benzothiazolethiol and reduced at a negative potential (-0.80 V). Then the reduced products were oxidised by DPASV procedure. The fact that three stripping peaks appeared on the voltammograms at the potentials of -0.48 V (Pb2+), -0.03 V (Cu2+) and +0.36 V (Hg2+) in relation to the SCE, demonstrates the possibility of simultaneous determination of Pb2+, Cu2+ and Hg2+. The best results were obtained under the following optimised conditions: 100 mV pulse amplitude, 3 min accumulation time, 25 mV s(-1) scan rate in phosphate solution pH 3.0. Using such parameters, calibration graphs were linear in the concentration ranges of 3.00-70.0 x 10(-7) mol L-1 (Pb2+), 8.00-100.0 X 10(-7) mol L-1 (Cu2+) and 2.00-10.0 x 10(-6) mol L-1 (Hg2+). Detection limits of 4.0 x 10(-8) mol L-1 (Pb2+), 2.0 x 10(-7) mol L-1 (Cu2+) and 4.0 x 10(-7) mol L-1 (Hg2+) were obtained at the signal noise ratio (SNR) of 3. The results indicate that this electrode is sensitive and effective for simultaneous determination of Pb2+, Cu2+ and Hg2+ in the analysed samples. (C) 2008 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5-dimercapto-1,3,4-thiadiazole (DTTPSG-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L-1 KNO3; nu=20 mV s(-1)) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG-CPE. The anodic wave peak at 0.31 V is well-defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg (L)-(1) Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.
Resumo:
This work presents a methodology for iron determination in fuel ethanol using a modified carbon paste electrode with 1.10 fenantroline/nafion. The electrochemical parameters were optimized for the proposed system and the voltammetric technique of square wave was employed for iron determination. An accumulation time of 5 minutes, such as a 100 mV of pulse magnitude (E(sw)) and frequency (f) of 25 Hz were used as optimized experimental conditions. The modified carbon paste electrode presented linear dependence of amperometric signal with iron concentration in a work range from 6.0x10(-6) until 2.0x10(-5) mol L(-1) of iron, exhibiting a linear correlation coefficient of 0.9884, a detection limit of 2.4 x10(-6) mol L(-1) (n = 3) and amperometric sensibility of 4.5x10(5) mu A/mol L(-1). Analytical curve method was used for iron determination at a commercial fuel sample. Flame atomic absorption spectroscopy was employed as comparative technique.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni2+ determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni2+ preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni2+ adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG)2 complex, whose electrochemical reduction provides the analytical signal.All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 x 10(-9) to 1.0 x 10(-6) mol L-1 with detection limit of 2.0 x 10(-9) mol L-1. Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 mu mol L-1 Ni2+ and the developed electrode was totally stable in ethanolic solutions. The contents of Ni2+ found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni2+ determination in commercial ethanol fuel samples without any sample pretreatment or dilution step. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Solid paraffin-based carbon paste electrodes modified with 2-aminothiazole organofunctionalized silica have been applied to the anodic stripping determination of copper ions in ethanol fuel samples without any sample treatment. The proposed method comprised four steps: (1) copper ions preconcentration at open circuit potential directly in the ethanol fuel sample; (2) exchange of the solution and immediate cathodic reduction of the absorbate at controlled potential; (3) differential pulse anodic stripping voltammetry; (4) electrochemical surface regeneration by applying a positive potential in acid media. Factors affecting the preconcentration, reduction and stripping steps were investigated and the optimum conditions were employed to develop the analytical procedure. Using a preconcentration time of 20 min and reduction time of 120 s at -0.3 V versus Ag/AgCl(sat) a linear range from 7.5 x 10(-8) to 2.5 x 10(-6) mol L(-1) with detection limit of 3.1 x 10(-8) mol L(-1) was obtained. Interference studies have shown a decrease in the interference effect according to the sequence: Ni > Zn > Cd > Pb > Fe. However, the interference effects of these ions have not forbidden the application of the proposed method. Recovery values between 98.8 and 102.3% were obtained for synthetic samples spiked with known amounts of Cu(2+) and interfering metallic ions. The developed electrode was successfully applied to the determination of Cu(2+) in commercial ethanol fuel samples. The results were compared to those obtained by flame atomic absorption spectroscopy by using the F-test and t-test. Neither F-value nor t-value have exceeded the critical values at 95% confidence level, confirming that there are no significant differences between the results obtained by both methods. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The electrochemical response of chalcopyrite was studied using electrochemical noise analysis (ENA). The assay was carried out under constant aeration using 30 mL in two electrochemical cells containing iron-free mineral salts solution. These cells were initially monitored for 56 hours, After 72 hours, 7.25x 10(10) cells mL(-1) of A, ferrooxidans strain LR were added in both cells and monitored until 128 h. Subsequent to this period, 0.927 mmol L-1 of silver ions and 400 mmol L-1 of chloride ions were added each one separately. Both conditions were monitored until 168 hours. According to results obtained, it was observed that Cl- ions addition induced an accelerated corrosion process. However, there is a tendency of the system to reach the stationary state due to repassivation of the electrodic surface. In the other side, the Ag+ addition contributed for the maintenance of the oxidant atmosphere, in spite of controversial effect caused by considerable variations in the R-n values, resulting in a instability in the chalcopyrite reactivity.
Resumo:
A mercury-sensitive chemically modified electrode (CME) based on modified silica gel-containing carbon paste was developed. The functional group attached to the silica gel surface was 3-(2-thiobenzimidazolyl)propyl, which is able to complex mercury ions. This electrode was applied to the determination of mercury(II) ions in aqueous solution. The mercury was chemically preconcentrated on the CME prior to voltammetric determination by anodic stripping in the differential-pulse mode. A calibration graph covering the concentration range from 0.08 to 2 mg l-1 was constructed. The precision for six determinations of 0.122 and 0.312 mg l-1 Hg(II) was 3.2 and 2.9% (relative standard deviation), respectively. The detection limit for a 5-min preconcentration period was 0.013 mg l-1. A study for foreign ions was also made.
Resumo:
A highly sensitive amperometric biosensor for determination of carbamate pesticides directly in water, fruit and vegetable samples has been evaluated, electrochemically characterized and optimized. The biosensor strip was fabricated in screen printed technique on a ceramic support using silver-based paste for reference electrode, and platinum-based paste for working and auxiliary electrodes. The working electrode was modified by a layer of carbon paste mixed with cobalt(II) phthalocyanine and acetylcellulose. Cholinesterase (ChE) enzymes with low enzymatic charge were immobilized on this layer. The operational simplicity of the biosensor consists in that a small drop (similar to 50 mu l) of substrate or sample is deposited on a horizontally positioned biosensor strip representing the microelectrochemical cell. The working potential of the biosensor was 370 mV versus Ag/AgI on a ship reference electrode preventing the interference of electroactive species which are oxidable at more positive potentials. The biosensor was applied to investigate the degradation of two reference ChE inhibitors in freeze dried water under different storage conditions and for direct determination of some N-methylcarbamates (NMCs) in fruit and vegetable samples at ppb concentration levels without any sample pretreatment. A comparison of the obtained results for the total carbamate concentration was done against those obtained using HPLC measurements. (C) 1999 Elsevier B.V. B.V. All rights reserved.