999 resultados para Carbon isotope composition
Resumo:
Oxygen and carbon isotope stratigraphies are given for the planktonic foraminifer Globoquadrina venezuelana (a deep-dwelling species) at three DSDP sites located along a north-south transect at approximately 133°W across the Pacific equatorial high-productivity zone. The records obtained at Sites 573 and 574 encompass the lower Miocene. At Site 575 the record includes the middle Miocene and extends into the lowermost lower Miocene. The time resolution of the planktonic foraminifer isotope record varies from 50,000 to 500,000 yr. The benthic foraminifer Oridorsalis umbonatus was analyzed for isotope composition at a few levels of Site 575. Isotope stratigraphies for all three sites are compared with carbonate, foraminifer preservation, and grain size records. We identified a number of chemostratigraphic signals that appear to be synchronous with previously recognized signals in the western equatorial Pacific and the tropical Indian Ocean, and thus provide useful tools for chronostratigraphic correlations. The sedimentary sequence at Site 573 is incomplete and condensed, whereas the sequences from Sites 574 and 575 together provide a complete lower Miocene record. The expanded nature of this record, which was recovered with minimum disturbance and provides excellent calcareous and siliceous biostratigraphic control, offers a unique opportunity to determine the precise timing of early Miocene events. Paleomagnetic data from the hydraulic piston cores at Site 575 for the first time allow late early Miocene paleoceanographic events to be tied directly to the paleomagnetic time scale. The multiple-signal stratigraphies provide clues for paleoceanographic reconstruction during the period of preconditioning before the major middle Miocene cooling. In the lowermost lower Miocene there is a pronounced shift toward greater d13C values (by -1%) within magnetic Chron 16 (between approximately 17.5 and 16.5 Ma). The "Chron 16 Carbon Shift" coincides with the cessation of an early Miocene warming trend visible in the d18O signals. Values of d13C remain high until approximately 15 Ma, then decrease toward initial (early Miocene) values near 13.5 Ma. The broad lower to middle Miocene d13C maximum appears to correlate with the deposition of organic-carbon-rich sediments around the margin of the northern Pacific in the Monterey Formation of California and its lateral equivalents. The sediments rimming the Pacific were probably deposited under coastal upwelling conditions that may have resulted from the development of a strong permanent thermocline. Deposition in the upwelling areas occurred partly under anaerobic conditions, which led to the excess extraction of organic carbon from the ocean. The timing of the middle Miocene cooling, which began after the Chron 16 Carbon Shift, suggests that the extraction of organic carbon preconditioned the ocean-atmosphere system for subsequent cooling. A major carbonate dissolution event in the late early Miocene, starting at approximately 18.7 Ma, is associated with the enrichment in 13C. The maximum dissolution is coeval with the Chron 16 Carbon Shift. It corresponds to a prominent acoustic horizon that can be traced throughout the equatorial Pacific.
Resumo:
Celebes Basin sediments from Ocean Drilling Program Site 767 (Leg 124) containing both marine and terrestrial organic matter have been investigated through palynofacies and geochemical analyses. The main degradation processes affecting or having affected organic matter are recorded in the sedimentary column as shown by ammonium, phosphate and sulfate pore-water profiles, and by petrographic and geochemical analyses of sediments. In the upper part of the sedimentary section (down to 200 mbsf), the decrease of the ratio of total organic carbon to sulfur (TOC/S) with depth, generally related to the sulfate reduction process, is accompanied by an increase of framboidal pyrite content in the marine organic matter, and by an increasing amount of amorphous marine organic matter relative to the total organic matter. However, as the terrestrial organic input also varies with depth, dilution effects are superimposed on diagenesis. This continental supply affects the TOC/S ratio by increasing total organic carbon and decreasing the ability of the bulk organic matter to be metabolized through sulfate reduction. A positive relationship between the TOC/P ratio and the amount of degraded organic matter of marine origin clearly displays the effect of an organic source on the composition of the sediment. Each lithostratigraphic unit possesses its own characteristics in terms of composition and preservation of organic matter. The effects of diagenesis can only be appreciated within a single lithostratigraphic unit and mainly affect the less-resistant marine organic matter.
Resumo:
The influence of microhabitat, organic matter flux, and metabolism on the stable oxygen and carbon isotope composition of live (Rose Bengal stained) and dead (empty tests) deep-sea benthic foraminifera from the Gulf of Lions (western Mediterranean Sea) have been studied. The total range of observed foraminiferal isotope values exceeds 1.0 per mil for d18O and 2.2 per mil for d13C demonstrating a wide range of coexisting disequilibria relative to d18O of equilibrium calcite (d18OEQ) and d13C of bottom water dissolved inorganic carbon (d13CDIC). The mean d18O values reveal strongest disequilibria for the studied epifaunal to shallow infaunal species (Cibicidoides pachydermus, Uvigerina mediterranea, Uvigerina peregrina) while values approach equilibrium in deep infaunal species (Globobulimina affinis, Globobulimina pseudospinescens). The mean d13C values decrease with increasing average living depths of the different species, thus reflecting a dominant microhabitat (pore water) signal. At the axis of the Lacaze-Duthier Canyon a minimum d13CDIC pore water gradient of approximately -2.1 per mil is assessed for the upper 6 cm of the surface sediment. Although live individuals of U. mediterranea were found in different depth intervals their mean d13C values are consistent with calcification at an average living depth around 1 cm. The deep infaunal occurrence of U. mediterranea specimens suggests association with macrofaunal burrows creating a microenvironment with geochemical characteristics similar to the topmost centimeter. This also explains the excellent agreement between stable isotope signals of live and dead individuals. The ontogenetic enrichment in both d18O and d13C values of U. mediterranea suggests a slow-down of metabolic rates during test growth similar to that previously observed in planktic foraminifera. Enhanced organic carbon fluxes and higher proportion of resuspended terrestrial organic material at the canyon axis are reflected by d13C values of U. mediterranea on average 0.58 per mil lower than those from the open slope. These results demonstrate the general applicability of the d13C signal of this species for the reconstruction of past organic matter fluxes in the Mediterranean Sea. Further studies on live specimens are needed for a more quantitative paleoceanographic approach.
Resumo:
Sediment samples from the Cariaco Trench (DSDP Leg 15) and the Walvis Ridge (DSDP Leg 75) ranging in age from Holocene to Upper Miocene (approximately 8 million years BP) and in depth from 5 to 258 m were extracted with basic sodium pyrophosphate and the extract analyzed for enzymic activity. Since no dehydrogenase, alkaline phosphatase or esterase activity was found, it is estimated from these data that the maximum bacterial population does not exceed 1000 cells per gram dry sediment. Peroxidase activity was, however, found in most samples: this showed marked dependence on the humic substance concentration (expressed as percent of the organic carbon content) and increased with depth at a rate of 33 units per meter. To explain this observation, we favor an hypothesis based on the presence of active humic-enzyme association. The humic substances absorb and stabilize peroxidase which is liberated throughout the sediment column by lysis of cells. The association of the enzyme with the humic substances protects it from biodegradation and denaturation. This hypothesis agrees with laboratory experiments which show the enhanced stability of humic-enzyme complexes towards degradation by biological, chemical and thermal effects.
Resumo:
The book is devoted to fundamental problems of organic geochemistry of ocean sediments. It is based on materials of organic matter and gas studies in cores from DSDP Legs 50 and 64. Experimental results obtained in the Laboratory of Carbon Geochemistry (V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow) take the main part of the book. Evolution of organic matter in specific environment of deep ocean sediments, sources of organic matter in the ocean and methods of their identification based on isotopic analysis and other methods are under discussion. Gas geochemistry in normal conditions of diagenesis, and in conditions under intense heating is studied.