855 resultados para Carbon fiber reinforced plastic
Resumo:
This study investigates the structural behavior of precracked reinforced concrete (RC) T-beams strengthened in shear with externally bonded carbon fiber-reinforced polymer (CFRP) sheets. It reports on seven tests on unstrengthened and strengthened RC T-beams, identifying the influence of load history, beam depth, and percentage of longitudinal steel reinforcement on the structural behavior. The experimental results indicate that the contributions of the external CFRP sheets to the shear force capacity can be significant and depend on most of the investigated variables. This study also investigates the accuracy of the prediction of the fiber-reinforced polymer (FRP) contribution in ACI 440.2R-08, UK Concrete Society TR55, and fib Bulletin 14 design guidelines for shear strengthening. A comparison of predicted values with experimental results indicates that the guidelines can overestimate the shear contribution of the externally bonded FRP system. © 2012, American Concrete Institute.
Resumo:
The results of an experimental and numerical investigation involving unstrengthened reinforced concrete (RC) T-beams and precracked RC T-beams strengthened in shear with prestressed carbon fiber-reinforced polymer (CFRP) straps are presented and discussed. The results provide insights into the influence of load history and beam depth on the structural behavior of both unstrengthened and strengthened beams. The strengthened beams exhibited capacity enhancements of 21.6 to 46% compared to the equivalent unstrengthened beams, demonstrating the potential effectiveness of the prestressed CFRP strap system. Nonlinear finite element (FE) predictions, which incorporated the load history, reproduced the observed experimental behavior but either underestimated or overestimated the post-cracking stiffness of the beams and strap strain at higher load levels. These limitations were attributed to the concrete shear models used in the FE analyses.
Resumo:
The shear fracture morphology of SCF/PEK-C composite with carbon fibers treated for different times was studied carefully by SEM. The result shows that the adhesion between fiber and matrix was improved and fractured model also changed from interface fracture to brittle fracture with increasing treatment time of carbon fiber. The fracture mechanism was discussed preliminary.
Resumo:
Drilling is a major process in the manufacturing of holes required for the assemblies of composite laminates in aerospace industry. Simulation of drilling process is an effective method in optimizing the drill geometry and process parameters in order to improve hole quality and to reduce the drill wear. In this research we have developed three-dimensional (3D) FE model for drilling CFRP. A 3D progressive intra-laminar failure model based on the Hashin's theory is considered. Also an inter-laminar delamination model which includes the onset and growth of delamination by using cohesive contact zone is developed. The developed model with inclusion of the improved delamination model and real drill geometry is used to make comparison between the step drill of different stage ratio and twist drill. Thrust force, torque and work piece stress distributions are estimated to decrease by the use of step drill with high stage ratio. The model indicates that delamination and other workpiece defects could be controlled by selection of suitable step drill geometry. Hence the 3D model could be used as a design tool for drill geometry for minimization of delamination in CFRP drilling. © 2013 Elsevier Ltd.
Resumo:
No abstract available
Resumo:
Many timber structures may require strengthening due to either decay and aging or an increase of load. This paper presents an experimental study in which eleven timber beams were tested, including three unstrengthened reference beams and eight beams strengthened with NSM CFRP bars. The test parameters include the position of NSM (tensile face or the bottom of the sides), the number of CFRP bars (1 or 2), and additional anchorage of NSM CFRP bars (steel wire U anchors or CFRP U strips). The test results show that the ultimate flexural strength of the timber beams were increased by 14%∼85% with an average of 47% due to NSM CFRP bar strengthening. Their deflection corresponding to the peak load was increased by 33% in average.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The increasing demand for electrical energy and the difficulties involved in installing new transmission lines presents a global challenge. Transmission line cables need to conduct more current, which creates the problem of excessive cable sag and limits the distance between towers. Therefore, it is necessary to develop new cables that have low thermal expansion coefficients, low densities, and high resistance to mechanical stress and corrosion. Continuous fiber-reinforced polymers are now widely used in many industries, including electrical utilities, and provide properties that are superior to those of traditional ACSR (aluminum conductor steel reinforced) cables. Although composite core cables show good performance in terms of corrosion, the contact of carbon fibers with aluminum promotes galvanic corrosion, which compromises mechanical performance. In this work, three different fiber coatings were tested (phenol formaldehyde resin, epoxy-based resin, and epoxy resin with polyester braiding), with measurements of the galvanic current. The use of epoxy resin combined with polyester braiding provided the best inhibition of galvanic corrosion. Investigation of thermal stability revealed that use of phenol formaldehyde resin resulted in a higher glass transition temperature. On the other hand, a post-cure process applied to epoxy-based resin enabled it to achieve glass transition temperatures of up to 200 degrees C. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
L’intento di questa tesi è fornire un andamento di alcune proprietà dei materiali compositi in fibra di carbonio, CFRP, utilizzati soprattutto nell’ambito aeronautico e navale, esposti quindi a condizioni ambientali specifiche di variazione ciclica della temperatura. Lo studio è effettuato sulle prove di caratterizzazione statica, di compressione, flessione in tre punti e taglio interlaminare, che generano risultati sulla resistenza delle fibre e della matrice e sul modulo elastico a compressione e trazione del composito.
Resumo:
Attraverso questo studio sono state indagate le proprietà di compositi laminati in fibra di carbonio (CFRP) nano-modificati con nanofibre in Nylon 6.6, in termini di resistenza al danneggiamento da impatti a bassa velocità (con caratterizzazione Drop Weight at Low Velocity) e di smorzamento della vibrazione (con caratterizzazione a damping). Sono stati indagate due configurazioni di nanorinforzo differenti, confrontate con le prestazioni di provini vergini laminati tradizionalmente. Sono infine state operate delle analisi grafiche delle micrografie di campioni sezionati per trarre conclusioni di carattere tecnologico.