959 resultados para Carbohydrate antigens
Resumo:
The methanol extract of Leptospira interrogans serovar canicola was purified by precipitation with acetone or acetone and chloroform. The antigenicity of the antigen was not altered by heating or treatment with pepsin and pronase. However the antigenicity was lost when the antigen was treated with periodic acid. Chemical analysis revealed the presence of 40% carbohydrate (22% methylpentose, 28%; hexoses),4% protein, 20% lipid and 2,7% phosphate. The complement fixation test with sera from patients with leptospirosis agreed with the microscopic agglutination reaction.
Resumo:
Fasciola hepatica somatic antigen, its partially purified fractions and excretion-secretion products were investigated as to serological, electrophoretic and biological properties. In a Sephadex G-100 column (SG-100), Fasciola hepatica total antigen (FhTA) gave 5 fractions, and SDS-PAGE analysis showed they were glycoproteins ranging from 14 to 94 kDa molecular weight (MW). When these fractions were analyzed by enzyme linked immunotransfer blot (EITB) and immunodiffusion in gel (ID) with serum from immunized rats with FhTA, the presence of different antigenic components was revealed. In the SDS-PAGE of excretor-secretor antigen (ESA), it was possible to observe peptides from 12 to 22 kDa, which were also present in FhTA. When the FhTA, its fractions and the ESA were analyzed by EITB with the immune rat serum (IRS), it was observed that only some fractions of the SG-100 shared antigens with the FhTA and ESA. Moreover, DTH and ITH responses were studied in FhTA immunized rats challenged with these different antigen components, revealing that the protein/carbohydrate ratio is important for inducing DTH response. The ESA was the most active component in the DTH and ITH response.
Resumo:
Leishmania braziliensis is a causative agent of American Cutaneous Leishmaniasis (ACL). The 034-JCG strain, isolated from a patient from the northern region of Paraná State, Brazil, was cultivated in Blood Agar Base medium, lyophilized and submitted to phenol-water extraction. The extract was treated with RNase I. The carbohydrate containing-antigen (Ag-CHO) was immunogenic to rabbits and showed at least a fraction with some negative charge at pH 8.2. This antigen showed cross-reactivity with the phenol-water extract of the growth medium used for the culture of promastigotes and with the surface antigens of promastigotes. Its composition is: 24.3% of total sugars, from which 11.2% of galactose, 7.5% of mannose and 5.6% of ribose. Protein content was 5.4% and phosphate 18.5%. The antigenic activity was maintained after: repeated freezing-thawing; lyophilization; heating at 100ºC for 30 minutes; treatment with RNase, trichloroacetic acid and sodium metaperiodate. The precipitin line obtained is Periodic Acid Schiff positive. The application of the Ag-CHO in counterimmunoelectrophoresis reaction for the immunodiagnosis of ACL showed 60% sensitivity, and no cross-reaction with the five sera of Chagas' disease patients tested. The use of this antigen in a more sensitive technique, with more samples of sera, may improve these results.
Resumo:
We have produced a number of monoclonal antibodies, protective and non-protective, which recognize a complex of schistosomula antigens, including the 38 kDa antigen. Eight different protective and non-protective monoclonal antibodies, varying in isotypes, were used in the binding assays. Lectin inhibition studies suggested that the monoclonal antibodies probably recognized carbohydrate epitopes on the antigen(s). Immunoprecipitation studies showed that at least two of the monoclonal antibodies recognized different epitopes on the same molecule. Additionally, we tested for monoclonal antibody binding after the antigens were treated with; 1) proteases, 2) periodate, 3) various exo- and endoglycosidases, 4) mild acid hydrolysis. We also tested for binding of the antibodies to keyhole limpet hemocyanin (KLH). Using the 8 monoclonal antibodies as probes, we were able to define at least 4 different carbohydrate epitopes related to the protective monoclonal antibodies, and at least one epitope which is seen by the non-protective antibodies. The epitope seen by the non-protective antibodies was shown to be cross-reactive with epitopes on KLH. These results demonstrate the importance of epitope mapping studies for any defined vaccine.
Resumo:
BACKGROUND: CD44 represents a heterogeneous group of surface glycoproteins involved in cell-cell and cell-matrix interactions. CD44H is the major receptor for hyaluronate, and most if not all CD44H known functions are attributed to its ability to recognize hyaluronate. We have previously demonstrated a lack of CD44 expression in high stages and NMYC-amplified tumors and further have shown that NMYC-amplified cell lines either did not express CD44 at all or expressed a nonfunctional receptor. On the other hand, nonamplified cells constitutively expressed an active receptor, suggesting that absence of CD44-mediated hy aluronate binding could be related to increased malignancy in human neuroblastoma. PROCEDURE: In the present study we have compared the glycosylated structure of CD44 expressed by NMYC amplified vs. nonamplified cell lines in relation to their adhesive properties for hyaluronate. These adhesive properties were measured after modifications of the carbohydrate structure with enzymes and inhibitors of N- or O-linked glycosylation. RESULTS AND CONCLUSIONS: Our results indicate that increased sialylation, defective N-linked glycosylation, and substitution of the CD44 glycoprotein with keratan sulfate glycosaminoglycan might include modifications observed on neuroblastoma cells that could account for the inability of the receptor to bind hyaluronate.
Resumo:
Neonatal treatment of A/J mice with DNP-Ficoll reduced or eliminated indirect anti-DNP PFC normally produced in response to adult challenge with DNP-keyhole limpet hemocyanin. The remaining direct anti-DNP PFC response was of low avidity. Spleen cells from neonatal A/J mice inhibited the in vitro but not the in vivo response of adult spleen cells to DNP-Ficoll.
Resumo:
Two different monoclonal antibodies (MAb), called L-D1 and L-C5, were produced after immunization with either intact cells or the methanol phase of glycolipid extracts, respectively, from the same human colon carcinoma line, LoVo. As determined by an antibody-binding radioimmunoassay (RIA) on intact cells, MAb L-D1 and MAb L-C5 were highly reactive with all five colon carcinoma lines tested and with only one out of the 21 cell lines of various tissue origin tested. No reactivity of either MAb was observed with peripheral blood lymphocytes, granulocytes, or erythrocytes from healthy donors of various blood groups. Both MAb were tested in competitive binding experiments with an anti-CEA MAb from our laboratory (CEA 35) and with two previously described anti-colon carcinoma MAb from the Wistar Institute called 1083-17-1A (17-1A) and NS-19.9. In competitive binding experiments, MAb L-D1 was inhibited by MAb 17-1A and reciprocally, whereas MAb L-C5 was not inhibited by any of the other MAb tested. MAb L-D1 precipitated a major protein band with an apparent molecular weight (MW) of 41 kilodaltons (kD); interestingly, MAb 17-1A, which was reported to react with an uncharacterized antigen, precipitated the same protein band of 41 kD. This was confirmed with immunodepletion experiments. Furthermore, after treatment of the colon carcinoma cell line with tunicamycin, both MAb L-D1 and 17-1A precipitated a protein band of 35 kD. This shift of 6 kD suggests that the glycoprotein recognized by these 2 MAb contains two to three N-linked carbohydrate side chains. MAb L-C5 precipitated a group of three to four protein bands ranging from 43 to 53 kD that were not modified by tunicamycin treatment. A preliminary study conducted by using immunoperoxidase labeling on frozen sections of primary colon carcinoma showed that the two new MAb react strongly with these tumors, but also weakly with the normal adjacent mucosa, as did the other anti-colon carcinoma MAb tested.
Resumo:
Tunicamycin, which inhibits N-glycosylation of proteins, was used as a tool to determine the type of linkage which occurs in glycoprotein antigens of Aspergillus fumigatus. When A. fumigatus extracts were electrophoretically separated and blotted then probed with anti-Aspergillus patients' sera, differences in antigenic profiles were noted when tunicamycin-treated samples were compared with controls. Tunicamycin had no detectable effect on the cellular proteinases of A. fumigatus, most of which are glycosylated. Some enzymatic components were lacking when extracellular proteinases were compared with those of control samples. The major catalase component of A. fumigatus is a concanavalin A (Con A)-binding glycoprotein. In cultures grown in the presence of tunicamycin, partiallydeglycosylated catalase components were obtained which could be distinguished from the native catalase by their altered mobilities in polyacrylamide gels. The effect of deglycosylation on catalase antigens was monitored using an antiserum raised to a ConA-binding fraction of A fumigatus mycelium. These antibodies bound both to the native glycoprotein and the partially deglycosylated material. These latter two were largely unaffected when incubated with an antiserum raised to a non-ConA-binding fraction of A. fumigatus which is essentially carbohydrate free. The ability to produce partially-glycosylated antigens of A. fumigatus offers a model to study the effect of basic structural modifications on both the enzymatic and antigenic activities of these molecules.
Resumo:
This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.
Resumo:
Glycan-binding antibodies form a significant subpopulation of both natural and acquired antibodies and play an important role in various immune processes. They are for example involved in innate immune responses, cancer, autoimmune diseases, and neurological disorders. In the present study, a microsphere-based flow-cytometric immunoassay (suspension array) was applied for multiplexed detection of glycan-binding antibodies in human serum. Several approaches for immobilization of glycoconjugates onto commercially available fluorescent microspheres were compared, and as the result, the design based on coupling of end-biotinylated glycopolymers has been selected. This method requires only minute amounts of glycans, similar to a printed glycan microarray. The resulting glyco-microspheres were used for detection of IgM and IgG antibodies directed against ABO blood group antigens. The possibility of multiplexing this assay was demonstrated with mixtures of microspheres modified with six different ABO related glycans. Multiplexed detection of anti-glycan IgM and IgG correlated well with singleplex assays (Pearson's correlation coefficient r = 0.95-0.99 for sera of different blood groups). The suspension array in singleplex format for A/B trisaccharide, H(di) and Le(x) microspheres corresponded well to the standard ELISA (r > 0.94). Therefore, the described method is promising for rapid, sensitive, and reproducible detection of anti-glycan antibodies in a multiplexed format.
Resumo:
The immune response of mice experimentally infected with Echinococcus multilocularis metacestodes becomes impaired so as to allow parasite survival and proliferation. Our study tackled the question on how different classes of E. multilocularis antigens (crude vesicular fluid (VF); purified proteinic rec-14-3-3; purified carbohydrate Em2(G11)) are involved in the maturation process of bone-marrow-derived dendritic cells (BMDCs) and subsequent exposure to lymph node (LN) cells. In our experiments, we used BMDCs cultivated from either naïve (control) or alveolar echinococcosis (AE)-infected C57BL/6 mice. We then tested surface markers (CD80, CD86, MHC class II) and cytokine expression levels (interleukin (IL)-10, IL-12p40 and tumour necrosis factor (TNF)-α) of non-stimulated BMDCs versus BMDCs stimulated with different Em-antigens or lipopolysaccharide (LPS). While LPS and rec-14-3-3-antigen were able to induce CD80, CD86 and (to a lower extent) MHC class II surface expression, Em2(G11) and, strikingly, also VF-antigen failed to do so. Similarly, LPS and rec-14-3-3 yielded elevated IL-12, TNF-α and IL-10 expression levels, while Em2(G11) and VF-antigen didn't. When naïve BMDCs were loaded with VF-antigen, they induced a strong non-specific proliferation of uncommitted LN cells. For both, BMDCs or LN cells, isolated from AE-infected mice, proliferation was abrogated. The most striking difference, revealed by comparing naïve with AE-BMDCs, was the complete inability of LPS-stimulated AE-BMDCs to activate lymphocytes from any LN cell group. Overall, the presenting activity of BMDCs from AE-infected mice seemed to trigger unresponsiveness in T cells, especially in the case of VF-antigen stimulation, thus contributing to the suppression of clonal expansion during the chronic phase of AE infection.
Resumo:
Human colon cancer cells, LS180 and 174T, exhibit monoclonal antibody (mAb) 1083-17-1A and 5E113 defined tumor associated antigens. By radioimmunoassay, LS180 cells expressed the highest amount of mAb1083 defined antigens among the cell lines tested. Another mAb, 5E113, competed with mAb1083 for binding to LS180 cells, suggesting that both mAbs might bind onto identical (or adjacent) epitopes. By Scatchard analysis, about one million copies of the epitopes were present on LS180 colon cancer cells. The affinity of mAb1083 binding to the cells was 2.97 x 10('10) M('-1); the Sipsian heteroclonality value of mAb1083 was 0.9, thus approximating a single clone of reactive antibody. The qualitative studies showed that the epitopes were probably not carbohydrate because of their sensitivity to proteinases and not to mixed glucosidases and neuraminidase. The tunicamycin homologue B(,2) inhibited the incoporation of ('3)H-labeled galactose but not uptake of ('35)S-labeled methionine, nor expression of monoclonal antibody defined antigens providing further evidence to exclude the possibility of carbohydrate epitopes. There was evidence that the epitope might be partially masked in its "native" conformation, since short exposure or low dose treatment with proteases increased mAbs binding. The best detergent for antigen extraction, as detected by dot blotting and competitive inhibition assays, was octylglucoside at 30 mM concentration. Three methods, immunoprecipitation, Western blotting and photoaffinity labeling, were used to determine the molecular nature of the antigens. These results demonstrated that the antibody bound both 43 K daltons (KD) and 22 KD proteins.^ An in vitro cell-mediated immune approach was also used to attempt identifying function for the antigens. The strategy was to use mAbs to block cytotoxic effector cell killing. However, instead of blocking, the mAb1083 and 5E113 showed strong antibody-dependent cell-mediated cytotoxicities (ADCCs) in the in vitro xenoimmune assay system. In addition, cytotoxic T lymphocytes (CTLs), natural killer cells, and K cell activity were found. Since even the F(ab')2 fragment of mAbs did not inhibit the cytolytic effect, the mAbs defined antigens may not be major target molecules for CTLs. In summary, two molecular species of tumor antigen(s) were identified by mAbs to be present on colon tumor cell lines, LS180 and LS174T. (Abstract shortened with permission of author.) ^
Resumo:
The discovery and characterization of oncofetal proteins have led to significant advances in early cancer diagnosis and therapeutic monitoring of patients undergoing cancer chemotherapy. These tumor-associated antigens are presently measured by sensitive, specific immunoassay techniques based on the detection of minute amounts of labeled antigen or antibody incorporated into immune complexes, which must be isolated from free antigen and antibody.^ Since there are several disadvantages with using radioisotopes, the most common immunolabel, one major objective was to prepare covalently coupled enzyme-antibody conjugates and evaluate their use as a practical alternative to radiolabeled immune reagents. An improved technique for the production of enzyme-antibody conjugates was developed that involves oxidizing the carbohydrate moieties on a glycoprotein enzyme, then introducing antibody in the presence of polyethylene glycol (PEG). Covalent enzyme-antibody conjugates involving alkaline phosphatase and amyloglucosidase were produced and characterized.^ In order to increase the sensitivity of detecting the amyloglucosidase-antibody conjugate, an enzyme cycling assay was developed that measures glucose, the product of maltose cleavage by amyloglucosidase, in the picomole range. The increased sensitivity obtained by combined usage of the amyloglucosidase-antibody conjugate and enzyme cycling assay was then compared to that of conventional enzyme immunoassay (EIA).^ For immune complex isolation, polystyrene tubes and protein A-bearing Staphylococcus aureus were evaluated as solid phase matrices, upon which antibodies can be immobilized. A sandwich-type EIA, using antibody-coated S. aureus, was developed that measures human albumin (HSA) in the nanogram range. The assay, using an alkaline phosphatase-anti-HSA conjugate, was applied to the determination of HSA in human urine and evaluated extensively for its clinical applicability.^ Finally, in view of the clinical significance of alpha-fetoprotein (AFP) as an oncofetal antigen and the difficulty with its purification for use as an immunogen and assay standard, a chemical purification protocol was developed that resulted in a high yield of immunochemically pure AFP. ^
Resumo:
The feasibility of using carbohydrate-based vaccines for the immunotherapy of cancer is being actively explored at the present time. Although a number of clinical trials have already been conducted with glycoconjugate vaccines, the optimal design and composition of the vaccines has yet to be determined. Among the candidate antigens being examined is Lewisy (Ley), a blood group-related antigen that is overexpressed on the majority of human carcinomas. Using Ley as a model for specificity, we have examined the role of epitope clustering, carrier structure, and adjuvant on the immunogenicity of Ley conjugates in mice. A glycolipopeptide containing a cluster of three contiguous Ley-serine epitopes and the Pam3Cys immunostimulating moiety was found to be superior to a similar construct containing only one Ley-serine epitope in eliciting antitumor cell antibodies. Because only IgM antibodies were produced by this vaccine, the effect on immunogenicity of coupling the glycopeptide to keyhole limpet hemocyanin was examined; although both IgM and IgG antibodies were formed, the antibodies reacted only with the immunizing structure. Reexamination of the clustered Ley-serine Pam3Cys conjugate with the adjuvant QS-21 resulted in the identification of both IgG and IgM antibodies reacting with tumor cells, thus demonstrating the feasibility of an entirely synthetic carbohydrate-based anticancer vaccine in an animal model.
Resumo:
Proliferation, migration-associated differentiation, and cell death occur continuously and in a spatially well-organized fashion along the crypt-villus axis of the mouse small intestine, making it an attractive system for studying how these processes are regulated and interrelated. A pathway for producing glycoconjugates was engineered in adult FVB/N transgenic mice by expressing a human alpha 1,3/4-fucosyltransferase (alpha 1,3/4-FT; EC 2.4.1.65) along the length of this crypt-villus axis. The alpha 1,3/4-FT can use lacto-N-tetraose or lacto-neo-N-tetraose core chains to generate Lewis (Le) blood group antigens Le(a) or Le(x), respectively, and H type 1 or H type 2 core chains to produce Leb and Le(y). Single- and multilabel immunohistochemical studies revealed that expression of the alpha 1,3/4-FT results in production of Le(a) and Leb antigens in both undifferentiated proliferated crypt cells and in differentiated postmitotic villus-associated epithelial cells. In contrast, Le(x) antigens were restricted to crypt cells. Villus enterocytes can be induced to reenter the cell cycle by expression of simian virus 40 tumor antigen under the control of a promoter that only functions in differentiated members of this lineage. Bitransgenic animals, generated from a cross of FVB/N alpha 1,3/4-FT with FVB/N simian virus 40 tumor antigen mice, expand the range of Le(x) expression to include villus-associated enterocytes that have reentered the cell cycle. Thus, the fucosylations unveil a proliferation-dependent switch in oligosaccharide production, as defined by a monoclonal antibody specific for the Le(x) epitope. These findings show that genetic engineering of oligosaccharide biosynthetic pathways can be used to define markers for entry into, or progression through, the cell cycle and to identify changes in endogenous carbohydrate metabolism that occur when proliferative status is altered in a manner that is not deleterious to the system under study.