992 resultados para Car-following
Resumo:
Microscopic traffic-simulation tools are increasingly being applied to evaluate the impacts of a wide variety of intelligent transport, systems (ITS) applications and other dynamic problems that are difficult to solve using traditional analytical models. The accuracy of a traffic-simulation system depends highly on the quality of the traffic-flow model at its core, with the two main critical components being the car-following and lane-changing models. This paper presents findings from a comparative evaluation of car-following behavior in a number of traffic simulators [advanced interactive microscopic simulator for urban and nonurban networks (AIMSUN), parallel microscopic simulation (PARAMICS), and Verkehr in Statiten-simulation (VISSIM)]. The car-following algorithms used in these simulators have been developed from a variety of theoretical backgrounds and are reported to have been calibrated on a number of different data sets. Very few independent studies have attempted to evaluate the performance of the underlying algorithms based on the same data set. The results reported in this study are based on a car-following experiment that used instrumented vehicles to record the speed and relative distance between follower and leader vehicles on a one-lane road. The experiment was replicated in each tool and the simulated car-following behavior was compared to the field data using a number of error tests. The results showed lower error values for the Gipps-based models implemented in AIMSUN and similar error values for the psychophysical spacing models used in VISSIM and PARAMICS. A qualitative drift and goal-seeking behavior test, which essentially shows how the distance headway between leader and follower vehicles should oscillate around a stable distance, also confirmed the findings.
Resumo:
This paper presented a novel approach to develop car following models using reactive agent techniques for mapping perceptions to actions. The results showed that the model outperformed the Gipps and Psychophysical family of car following models. The standing of this work is highlighted by its acceptance and publication in the proceedings of the International IEEE Conference on Intelligent Transportation Systems (ITS), which is now recognised as the premier international conference on ITS. The paper acceptance rate to this conference was 67 percent. The standing of this paper is also evidenced by its listing in international databases like Ei Inspec and IEEE Xplore. The paper is also listed in Google Scholar. Dr Dia co-authored this paper with his PhD student Sakda Panwai.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
In this article the authors discuss the new car buying experience for expectant and new parents to identify the impact of becoming a parent on the values and attitudes they exhibit during the purchase experience and in the final choice they make. In particular, the authors contend that the introduction of a first baby to a family unit will influence the buying process as parents will use consumption to express values and to determine product usage. Firstly, literature delineating the buying process is reviewed, along with literature relating to value adjustment concerning the addition of a newborn to the family unit and the influences of impending or recent parenthood upon the purchase process for a new car. Following this discussion, research suggestions and managerial implications are discussed.
Resumo:
In this paper we identify the origins of stop-and-go (or slow-and-go) driving and measure microscopic features of their propagations by analyzing vehicle trajectories via Wavelet Transform. Based on 53 oscillation cases analyzed, we find that oscillations can be originated by either lane-changing maneuvers (LCMs) or car-following behavior (CF). LCMs were predominantly responsible for oscillation formations in the absence of considerable horizontal or vertical curves, whereas oscillations formed spontaneously near roadside work on an uphill segment. Regardless of the trigger, the features of oscillation propagations were similar in terms of propagation speed, oscillation duration, and amplitude. All observed cases initially exhibited a precursor phase, in which slow-and-go motions were localized. Some of them eventually transitioned into a well developed phase, in which oscillations propagated upstream in queue. LCMs were primarily responsible for the transition, although some transitions occurred without LCMs. Our findings also suggest that an oscillation has a regressive effect on car following behavior: a deceleration wave of an oscillation affects a timid driver (with larger response time and minimum spacing) to become less timid and an aggressive driver less aggressive, although this change may be short-lived. An extended framework of Newell’s CF is able to describe the regressive effects with two additional parameters with reasonable accuracy, as verified using vehicle trajectory data.
Resumo:
Evaluating the safety of different traffic facilities is a complex and crucial task. Microscopic simulation models have been widely used for traffic management but have been largely neglected in traffic safety studies. Micro simulation to study safety is more ethical and accessible than the traditional safety studies, which only assess historical crash data. However, current microscopic models are unable to mimic unsafe driver behavior, as they are based on presumptions of safe driver behavior. This highlights the need for a critical examination of the current microscopic models to determine which components and parameters have an effect on safety indicator reproduction. The question then arises whether these safety indicators are valid indicators of traffic safety. The safety indicators were therefore selected and tested for straight motorway segments in Brisbane, Australia. This test examined the capability of a micro-simulation model and presents a better understanding of micro-simulation models and how such models, in particular car following models can be enriched to present more accurate safety indicators.
Resumo:
In microscopic traffic simulators, the interaction between vehicles is considered. The dynamics of the system then becomes an emergent property of the interaction between its components. Such interactions include lane-changing, car-following behaviours and intersection management. Although, in some cases, such simulators produce realistic prediction, they do not allow for an important aspect of the dynamics, that is, the driver-vehicle interaction. This paper introduces a physically sound vehicle-driver model for realistic microscopic simulation. By building a nanoscopic traffic simulation model that uses steering angle and throttle position as parameters, the model aims to overcome unrealistic acceleration and deceleration values, as found in various microscopic simulation tools. A physics engine calculates the driving force of the vehicle, and the preliminary results presented here, show that, through a realistic driver-vehicle-environment simulator, it becomes possible to model realistic driver and vehicle behaviours in a traffic simulation.
Resumo:
This paper investigates the effects of lane-changing in driver behavior by measuring (i) the induced transient behavior and (ii) the change in driver characteristics, i.e., changes in driver response time and minimum spacing. We find that the transition largely consists of a pre-insertion transition and a relaxation process. These two processes are different but can be reasonably captured with a single model. The findings also suggest that lane-changing induces a regressive effect on driver characteristics: a timid driver (characterized by larger response time and minimum spacing) tends to become less timid and an aggressive driver less aggressive. We offer an extension to Newell’s car-following model to describe this regressive effect and verify it using vehicle trajectory data.
Resumo:
This paper studies traffic hysteresis arising in traffic oscillations from a behavioral perspective. It is found that the occurrence and type of traffic hysteresis is closely correlated with driver behavior when experiencing traffic oscillations and with the time driver reaction begins relative to the starting deceleration wave. Statistical results suggest that driver behavior is different depending on its position along the oscillation. This suggests that different car-following models should be used inside the different stages of an oscillation in order to replicate realistic congestion features.