951 resultados para Caputo Fractional Derivatives
Resumo:
This article studies several Fractional Order Control algorithms used for joint control of a hexapod robot. Both Padé and series approximations to the fractional derivative are considered for the control algorithm. The walking performance is evaluated through two indices: The mean absolute density of energy used per unit distance travelled, and the control effort. A set of simulation experiments reveals the influence of the different approximations upon the proposed indices. The results show that the fractional proportional and derivative algorithm, implemented using the Padé approximation with a small number of terms, gives the best results.
Resumo:
This paper presents a review of definitions of fractional order derivatives and integrals that appear in mathematics, physics, and engineering.
Resumo:
The calculation of fractional derivatives is an important topic in scientific research. While formal definitions are clear from the mathematical point of view, they pose limitations in applied sciences that have not been yet tackled. This paper addresses the problem of obtaining left and right side derivatives when adopting numerical approximations. The results reveal the relationship between the resulting distinct values for different fractional orders and types of signals.
Resumo:
This paper discusses the concepts underlying the formulation of operators capable of being interpreted as fractional derivatives or fractional integrals. Two criteria for required by a fractional operator are formulated. The Grünwald–Letnikov, Riemann–Liouville and Caputo fractional derivatives and the Riesz potential are accessed in the light of the proposed criteria. A Leibniz rule is also obtained for the Riesz potential.
Resumo:
An expansion formula for fractional derivatives given as in form of a series involving function and moments of its k-th derivative is derived. The convergence of the series is proved and an estimate of the reminder is given. The form of the fractional derivative given here is especially suitable in deriving restrictions, in a form of internal variable theory, following from the second law of thermodynamics, when applied to linear viscoelasticity of fractional derivative type.
Resumo:
Mathematics Subject Classification: 26A33, 31C25, 35S99, 47D07.
Resumo:
Mathematics Subject Classification: 74D05, 26A33
Resumo:
Mathematics Subject Classification: 26A33, 34A37.
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05
Resumo:
Mathematics Subject Classification 2010: 26A33, 33E12, 35S10, 45K05.
Resumo:
MSC 2010: 26A33, 70H25, 46F12, 34K37 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo
Resumo:
MSC 2010: 49K05, 26A33
Resumo:
2000 Mathematics Subject Classification: 41A25, 41A36, 40G15.
Resumo:
2000 Mathematics Subject Classification: 41A25, 41A36.
Resumo:
In this paper we consider a Caputo type fractional derivative with respect to another function. Some properties, like the semigroup law, a relationship between the fractional derivative and the fractional integral, Taylor’s Theorem, Fermat’s Theorem, etc., are studied. Also, a numerical method to deal with such operators, consisting in approximating the fractional derivative by a sum that depends on the first-order derivative, is presented. Relying on examples, we show the efficiency and applicability of the method. Finally, an application of the fractional derivative, by considering a Population Growth Model, and showing that we can model more accurately the process using different kernels for the fractional operator is provided.