979 resultados para Cap Creux
Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap
Resumo:
Eleven carotid atherothrombotic plaque samples were harvested from patients. Three samples that were highly calcified were discarded, while eight yielded results. The elastic properties of the material were estimated by fitting the measured indentation response to finite element simulations. The methodology was refined and its accuracy quantified using a synthetic rubber. The neo-Hookean form of the material model gave a good fit to the measured response of the tissue. The inferred shear modulus μ was found to be in the range 7-100 kPa, with a median value of 11 kPa. A review of published materials data showed a wide range of material properties for human atherothrombotic tissue. The effects of anisotropy and time dependency in these published results were highlighted. The present measurements were comparable to the static radial compression tests of Lee et al, 1991 [Structure-dependent dynamic behaviour of fibrous caps from human atherosclerotic plaques. Circulation 83, 1764-1770].
Resumo:
Background and Purpose Acute cerebral ischemic events are associated with rupture of vulnerable carotid atheroma and subsequent thrombosis. Factors such as luminal stenosis and fibrous cap thickness have been thought to be important risk factors for plaque rupture. We used a flow-structure interaction model to simulate the interaction between blood flow and atheromatous plaque to evaluate the effect of the degree of luminal stenosis and fibrous cap thickness on plaque vulnerability. Methods A coupled nonlinear time-dependent model with a flow-plaque interaction simulation was used to perform flow and stress/strain analysis in a stenotic carotid artery model. The stress distribution within the plaque and the flow conditions within the vessel were calculated for every case when varying the fibrous cap thickness from 0.1 to 2 mm and the degree of luminal stenosis from 10% to 95%. A rupture stress of 300 kPa was chosen to indicate a high risk of plaque rupture. A 1-sample t test was used to compare plaque stresses with the rupture stress. Results High stress concentrations were found in the plaques in arteries with >70% degree of stenosis. Plaque stresses in arteries with 30% to 70% stenosis increased exponentially as fibrous cap thickness decreased. A decrease of fibrous cap thickness from 0.4 to 0.2 mm resulted in an increase of plaque stress from 141 to 409 kPa in a 40% degree stenotic artery. Conclusions There is an increase in plaque stress in arteries with a thin fibrous cap. The presence of a moderate carotid stenosis (30% to 70%) with a thin fibrous cap indicates a high risk for plaque rupture. Patients in the future may be risk stratified by measuring both fibrous cap thickness and luminal stenosis.
Resumo:
Atheromatous plaque rupture h the cause of the majority of strokes and heart attacks in the developed world. The role of calcium deposits and their contribution to plaque vulnerability are controversial. Some studies have suggested that calcified plaque tends to be more stable whereas others have suggested the opposite. This study uses a finite element model to evaluate the effect of calcium deposits on the stress within the fibrous cap by varying their location and size. Plaque fibrous cap, lipid pool and calcification were modeled as hyperelastic, Isotropic, (nearly) incompressible materials with different properties for large deformation analysis by assigning time-dependent pressure loading on the lumen wall. The stress and strain contours were illustrated for each condition for comparison. Von Mises stress only increases up to 1.5% when varying the location of calcification in the lipid pool distant to the fibrous cap. Calcification in the fibrous cap leads to a 43% increase of Von Mises stress when compared with that in the lipid pool. An increase of 100% of calcification area leads to a 15% stress increase in the fibrous cap. Calcification in the lipid pool does not increase fibrous cap stress when it is distant to the fibrous cap, whilst large areas of calcification close to or in the fibrous cap may lead to a high stress concentration within the fibrous cap, which may cause plaque rupture. This study highlights the application of a computational model on a simulation of clinical problems, and it may provide insights into the mechanism of plaque rupture.
Resumo:
The Community Aspirations Program in Education (CAP-ED) was delivered by CQUniversity’s Office of Indigenous Engagement to increase Aboriginal and Torres Strait Islander student participation in higher education. CAP-ED was developed through scoping studies of six individual communities within the CQuniversity footprint, including a designated Aboriginal and Torres Strait Islander community and rural and regional communities. The scoping process included developing community profiles and extensive consultation with Traditional Owners, Elders, community members and key stakeholders. This process proved to be an essential component of CAP-ED’s success, resulting in Indigenous participation in the program’s networking lunches, through to the delivery of information and workshop sessions. Moreover, it witnessed engagement with people in communities as partners in the program’s delivery and co-presenters in workshops and other events. The CAP-ED workshops focus on identity, culture, aspirations and assist participants to see that they have the potential to participate in higher education. The other essential components of the program’s success have included enabling people to ‘see what they can be’, offering opportunities for people to ask questions, voice honest concerns, and build confidence. The flexibility of delivery was paramount in accommodating the varying needs of each community and the differences in cultural protocols and community approaches, while the face to face engagement between knowledgeable and skilled staff and community members proved to be vital. Over the life of the project, CAP-ED has developed into a broad based strategy that has successfully matched community needs and university based responses through the process of community engagement.
Resumo:
The highly dynamic remodeling of the actin cytoskeleton is responsible for most motile and morphogenetic processes in all eukaryotic cells. In order to generate appropriate spatial and temporal movements, the actin dynamics must be under tight control of an array of actin binding proteins (ABPs). Many proteins have been shown to play a specific role in actin filament growth or disassembly of older filaments. Very little is known about the proteins affecting recycling i.e. the step where newly depolymerized actin monomers are funneled into new rounds of filament assembly. A central protein family involved in the regulation of actin turnover is cyclase-associated proteins (CAP, called Srv2 in budding yeast). This 50-60 kDa protein was first identified from yeast as a suppressor of an activated RAS-allele and a factor associated with adenylyl cyclase. The CAP proteins harbor N-terminal coiled-coil (cc) domain, originally identified as a site for adenylyl cyclase binding. In the N-terminal half is also a 14-3-3 like domain, which is followed by central proline-rich domains and the WH2 domain. In the C-terminal end locates the highly conserved ADP-G-actin binding domain. In this study, we identified two previously suggested but poorly characterized interaction partners for Srv2/CAP: profilin and ADF/cofilin. Profilins are small proteins (12-16 kDa) that bind ATP-actin monomers and promote the nucleotide exchange of actin. The profilin-ATP-actin complex can be directly targeted to the growth of the filament barbed ends capped by Ena/VASP or formins. ADF/cofilins are also small (13-19 kDa) and highly conserved actin binding proteins. They depolymerize ADP-actin monomers from filament pointed ends and remain bound to ADP-actin strongly inhibiting nucleotide exchange. We revealed that the ADP-actin-cofilin complex is able to directly interact with the 14-3-3 like domain at the N-terminal region of Srv2/CAP. The C-terminal high affinity ADP-actin binding site of Srv2/CAP competes with cofilin for an actin monomer. Cofilin can thus be released from Srv2/CAP for the subsequent round of depolymerization. We also revealed that profilin interacts with the first proline-rich region of Srv2/CAP and that the binding occurs simultaneously with ADP-actin binding to C-terminal domain of Srv2/CAP. Both profilin and Srv2/CAP can promote nucleotide exchange of actin monomer. Because profilin has much higher affinity to ATP-actin than Srv2/CAP, the ATP-actin-profilin complex is released for filament polymerization. While a disruption of cofilin binding in yeast Srv2/CAP produces a severe phenotype comparable to Srv2/CAP deletion, an impairment of profilin binding from Srv2/CAP results in much milder phenotype. This suggests that the interaction with cofilin is essential for the function of Srv2/CAP, whereas profilin can also promote its function without direct interaction with Srv2/CAP. We also show that two CAP isoforms with specific expression patterns are present in mice. CAP1 is the major isoform in most tissues, while CAP2 is predominantly expressed in muscles. Deletion of CAP1 from non-muscle cells results in severe actin phenotype accompanied with mislocalization of cofilin to cytoplasmic aggregates. Together these studies suggest that Srv2/CAP recycles actin monomers from cofilin to profilin and thus it plays a central role in actin dynamics in both yeast and mammalian cells.
Resumo:
Despite highly conserved core catalytic domains, members of the metallophosphoesterase (MPE) superfamily perform diverse and crucial functions ranging from nucleotide and nucleic acid metabolism to phospholipid hydrolysis. Unique structural elements outside of the catalytic core called ``cap domains'' are thought to provide specialization to these enzymes; however, no directed study has been performed to substantiate this. The cap domain of Rv0805, an MPE from Mycobacterium tuberculosis, is located C-terminal to its catalytic domain and is dispensable for the catalytic activity of this enzyme in vitro. We show here that this C-terminal extension (CTE) mediates in vivo localization of the protein to the cell membrane and cell wall as well as modulates expression levels of Rv0805 in mycobacteria. We also demonstrate that Rv0805 interacts with the cell wall of mycobacteria, possibly with the mycolyl-arabinogalactan-peptidoglycan complex, by virtue of its C terminus, a hitherto unknown property of this MPE. Using a panel of mutant proteins, we identify interactions between active site residues of Rv0805 and the CTE that determine its association with the cell wall. Finally, we show that Rv0805 and a truncated mutant devoid of the CTE produce different phenotypic effects when expressed in mycobacteria. Our study thus provides a detailed dissection of the functions of the cap domain of an MPE and suggests that the repertoire of cellular functions of MPEs cannot be understood without exploring the modulatory effects of these subdomains.
Resumo:
Carbon isotope compositions of carbonate rocks from similar to 2.7-Ga-old Neoarchean Vanivilas Formation of the Dharwar Supergroup presented earlier by us are re-evaluated in this study, besides oxygen isotope compositions of a few silica dolomite pairs. The purpose of such a revisit assumes significance in view of recent field evidences that suggest a glaciomarine origin for the matrix-supported conglomerate member, the Talya conglomerate, which underlies the carbonate rocks of the Vanivilas Formation. An in-depth analysis of carbon isotope data reveals preservation of their pristine character despite the rocks having been subjected to metamorphism to different degrees (from lower greenschist to lower amphibolite facies). The dolomitic member of Vanivilas Formation of Marikanive area is characterized by highly depleted delta C-13 value (up to -5 parts per thousand VPDB) and merits as the Indian example of ca. 2.7-Ga-old cap carbonate. This inference is further supported by estimated low temperature of equilibration documented by a few silica dolomite pairs from the Vanivilas Formation collected near Kalche area. These pairs show evidence for oxygen isotopic equilibrium at low temperatures (similar to 0-20 degrees C) with depleted water (delta O-18 = -21 parts per thousand to -15 parts per thousand VSMOW) of glacial origin. We propose that the mineral pairs were deposited during the deglaciation period when the ocean temperature was in its gradual restoration phase. The dolomite of Marikanive area is the first record of cap carbonates from the Indian subcontinent with Neoarchean antiquity.
Resumo:
This an implementation manual for institutions wanting to implement XCRI-CAP for PG courses and send feeds to Prospects
Resumo:
Claire spoke to Janette Hillicks about the University of Bradford's implementation of XCRI-CAP.
Resumo:
EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.)