956 resultados para Cancer Biology


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The role of lectins in mediating cancer metastasis, apoptosis as well as various other signaling events has been well established in the past few years. Data on various aspects of the role of lectins in cancer is being accumulated at a rapid pace. The data on lectins available in the literature is so diverse, that it becomes difficult and time-consuming, if not impossible to comprehend the advances in various areas and obtain the maximum benefit. Not only do the lectins vary significantly in their individual functional roles, but they are also diverse in their sequences, structures, binding site architectures, quaternary structures, carbohydrate affinities and specificities as well as their potential applications. An organization of these seemingly independent data into a common framework is essential in order to achieve effective use of all the data towards understanding the roles of different lectins in different aspects of cancer and any resulting applications. An integrated knowledge base (CancerLectinDB) together with appropriate analytical tools has therefore been developed for lectins relevant for any aspect of cancer, by collating and integrating diverse data. This database is unique in terms of providing sequence, structural, and functional annotations for lectins from all known sources in cancer and is expected to be a useful addition to the number of glycan related resources now available to the community. The database has been implemented using MySQL on a Linux platform and web-enabled using Perl-CGI and Java tools. Data for individual lectins pertain to taxonomic, biochemical, domain architecture, molecular sequence and structural details as well as carbohydrate specificities. Extensive links have also been provided for relevant bioinformatics resources and analytical tools. Availability of diverse data integrated into a common framework is expected to be of high value for various studies on lectin cancer biology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prostate cancer is the most common cancer in males. Although many patients with localized disease can be cured with surgery and radiotherapy, advanced disease and especially castration resistant metastatic disease remains incurable, with a median life expectancy of less than 18 months. Oncolytic adenoviruses (Ads) are a new promising treatment against cancer due to their innate capacity to kill cancer cells. Viral replication in tumor cells leads to oncolysis and production of a multiplicity of new virions that are capable of further destroying cancerous tissue. Oncolytic Ads can be modified for tumor targeted infection and replication and be armed with therapeutic transgenes to maximize the oncolytic effect. Worldwide, clinical trials with oncolytic Ads have demonstrated good safety while the antitumor efficacy remains to be improved. Importantly, the best responses have been reported when oncolytic adenoviruses have been combined with standard cancer treatments, such as chemotherapy and radiation. Further, a challenge in many virotherapy approaches has been the monitoring of virus replication in vivo. Reporter genes have been extensively used as transgenes to evaluate the biodistribution of the virus and activity of specific promoters. However, these techniques are often limited to preclinical evaluation and not amenable to human use. The aim of the thesis was to find and develop new oncolytic Ads with maximum efficacy against metastatic, castration resistant prostate cancer and study them in vitro and in vivo combined to different forms of radiation therapy. Using combination therapy, we were aiming for better antitumor efficacy with reduced side effects. Capsid modified Ads for enhanced transduction were studied. Serotype 3 targeted chimera, Ad5/3, was found to have enhanced infectivity for prostate cancer and was used for developing new viruses for the study. Correlation between Ad-encoded marker peptide secretion and simultaneous viral replication was evaluated and the effects of radiotherapy on viral replication were studied in detail. We found that the repair of double strand breaks caused by ionizing radiation was inhibited by adenoviral proteins and led to autophagic cell death. Both subcutaneous models and intrapulmonary tumor models mimicking metastatic, aggressive disease were used in vivo. Virus efficacy was evaluated by intratumoral injections. Also, intravenous administration was evaluated to study the effectiveness in metastatic disease. Oncolytic adenovirus treatment led to significant tumor growth control and increased the survival rate of the mice. These results were further improved when oncolytic Ads were combined with radiation therapy. Oncolytic Ads expressing human sodium/iodide transporter (hNIS) as a transgene were evaluated for their oncolytic potency and for the functionality of hNIS in vitro and in vivo. Monitoring of viral replication was also assessed using different imaging modalities relative to clinical use. SPECT imaging of tumor-bearing mice was evaluated and combined with simultaneous CT-scanning to obtain important anatomical information on biodistribution, also in a three-dimensional form. It was shown that hNIS-expressing adenoviruses could harbour a bi-functional transgene allowing for localization and imaging of viral replication. Targeted radiotherapy was applied by systemic radioiodide administration and resulted in iodide accumulation into Ad-infected tumor. The combination treatment showed significantly enhanced antitumor efficacy in mice bearing prostate cancer tumors. In summary, the results presented above aim to provide new treatment modalities for castration resistant prostate cancer. Molecular insights were provided for better understanding of the benefits of combined radiation therapy and oncolytic adenoviruses, which will hopefully facilitate the translation of the approach into clinical use for humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most of the predisposition to hereditary breast and ovarian cancer has been attributed to inherited defects in two tumor suppressor genes BRCA1 and BRCA2. To explore the contribution of BRCA1 mutations to hereditary breast cancer among Indian women, we examined the coding sequence of the BRCA1 gene in 14 breast cancer patients with a positive family history of breast and/or ovarian cancer. Mutation analysis was carried out using conformation sensitive gel electrophoresis (CSGE) followed by sequencing. Three mutations (21%) in the BRCA1 gene were identified. Two of them are novel mutations of which one is a missense mutation in exon 7 near the RING finger domain, while the other is a one base pair deletion in exon 11 which results in protein truncation. The third mutation, 185delAG, has been previously described in Ashkenazi Jewish families. To our knowledge this is the first report of a study of germline BRCA1 mutation analysis in familial breast cancer in India. Our data from 14 different families suggests a lower prevalence but definite involvement of germline mutations in the BRCA1 gene among Indian women with breast cancer and a family history of breast cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis investigates the mechanisms by which HRG-1 contributes to the invasive and cytoprotective signalling pathways in cancer cells through its effects on VATPase activity and heme transport. Plasma membrane-localised V-ATPase activity correlates with enhanced metastatic potential in cancer cells, which is attributed to extrusion of protons into the extracellular space and activation of pH-sensitive, extracellular matrix degrading-proteases. We found that HRG-1 is co-expressed with the V-ATPase at the plasma membrane of certain aggressive cancer cell types. Modulation of HRG-1 expression altered both the localisation and activity of the VATPase. We also found that HRG-1 enhances trafficking of essential transporters such as the glucose transporter (GLUT-1) in cancer cells, and increases glucose uptake, which is required for cancer cell growth, metabolism and V-ATPase assembly. Heme is potentially cytotoxic, owing to its iron moiety, and therefore the trafficking of heme is tightly controlled in cells. We hypothesised that HRG-1 is required for the transport of heme to intracellular compartments. Importantly, we found that HRG-1 interacts with the heme oxygenases that are necessary for heme catabolism. HRG-1 is also required for trafficking of both heme-bound and nonheme-bound receptors and suppression of HRG-1 results in perturbed receptor trafficking to the lysosome. Suppression of HRG-1 in HeLa cells increases toxic heme accumulation, reactive oxygen species accumulation, and DNA damage resulting in caspasedependent cell death. Mutation of essential heme binding residues in HRG-1 results in decreased heme binding to HRG-1. Interestingly, cells expressing heme-binding HRG-1 mutants exhibit decreased internalisation of the transferrin receptor compared to cells expressing wildtype HRG-1. These findings suggest that HRG- 1/heme trafficking contributes to a hitherto unappreciated aspect of receptormediated endocytosis. Overall, the findings of this thesis show that HRG-1-mediated regulation of intracellular and extracellular pH through V-ATPase activity is essential for a functioning endocytic pathway. This is critical for cells to acquire nutrients such as folate, iron and glucose and to mediate signalling in response to growth factor activation. Thus, HRG-1 facilitates enhanced metabolic activity of cancer cells to enable tumour growth and metastasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have previously shown that treatment of prostate cancer and melanoma cells expressing GRP78 on their cell surface with antibody directed against the COOH-terminal domain of GRP78 upregulates and activates p53 causing decreased cell proliferation and upregulated apoptosis. In this report, we demonstrate that treatment of 1-LN prostate cancer cells with this antibody decreases cell surface expression of GRP78, Akt(Thr308) and Akt(Ser473) kinase activities and reduces phosphorylation of FOXO, and GSK3beta. This treatment also suppresses activation of ERK1/2, p38 MAPK and MKK3/6; however, it upregulates MKK4 activity. JNK, as determined by its phosphorylation state, is subsequently activated, triggering apoptosis. Incubation of cells with antibody reduced levels of anti-apoptotic Bcl-2, while elevating pro-apoptotic BAD, BAX and BAK expression as well as cleaved caspases-3, -7, -8 and -9. Silencing GRP78 or p53 gene expression by RNAi prior to antibody treatment abrogated these effects. We conclude that antibody directed against the COOH-terminal domain of GRP78 may prove useful as a pan suppressor of proliferative/survival signaling in cancer cells expressing GRP78 on their cell surface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the determinants of resistance of 5-fluorouracil (5FU) is of significant value to optimizing administration of the drug, and introducing novel agents and treatment strategies. Here, the expression of 92 genes involved in 5FU transport, metabolism, co-factor (folate) metabolism and downstream effects was measured by real-time PCR low density arrays in 14 patient-derived colorectal cancer xenografts characterized for 5FU resistance. Candidate gene function was tested by siRNA and uridine modulation, and immunoblotting, apoptosis and cell cycle analysis. Predictive significance was tested by immunohistochemistry of tumors from 125 stage III colorectal cancer patients treated with and without 5FU. Of 8 genes significantly differentially expressed between 5FU sensitive and resistant xenograft tumors, CTPS2 was the gene with the highest probability of differential expression (p = 0.008). Reduction of CTPS2 expression by siRNA increased the resistance of colorectal cancer cell lines DLD1 and LS174T to 5FU and its analog, FUDR. CTPS2 siRNA significantly reduced cell S-phase accumulation and apoptosis following 5FU treatment. Exposure of cells to uridine, a precursor to the CTPS2 substrate uridine triphosphate, also increased 5FU resistance. Patients with low CTPS2 did not gain a survival benefit from 5FU treatment (p = 0.072), while those with high expression did (p = 0.003). Low CTPS2 expression may be a rationally-based determinant of 5FU resistance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The recent identification of somatic mutations in the catalytic region of PIK3 (PIK3CA) in breast cancer and demonstration of their oncogenic function has implicated PIK3CA in mammary carcinogenesis. To investigate possible ethnic differences in patterns of PIK3CA mutations in Singaporean Chinese breast cancer and to characterize these in a panel of cell lines, we sequenced exons 9 and 20 in 80 primary tumors, 19 breast cancer cell lines and 7 normal human mammary epithelial cells (HMECs). Searching for novel hotspots of mutation, we sequenced additional exons ( 1, 2, 6, 7, 14 and 18) in 20 primary tumors and 6 breast cancer cell lines. We detected 33 point mutations in 31 of 80 (39%) breast cancers, and 11 mutations in 10 of 19 (53%) breast cancer cell lines. No mutations were detected in normal breast tissue adjacent to the tumor, or in the 6 normal HMECs. The exon 20 A3140G (H1047R) substitution was identified most frequently (22/31, 71%) and showed a significant association with patient age ( p = 0.043) and stage of the disease ( p = 0.025), but not with ER/PR status or histological grade of the tumor. The incidence of point mutations in PIK3CA, the A3140G substitution in particular, in Singapore breast cancers are among the most frequent reported to date for any gene in breast cancer. The results suggest that mutation of PIK3CA might contribute to development of early stage breast cancer and could provide a potent target for early diagnosis and therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: We proposed to investigate the radiosensitizing properties of PBOX-15, a novel microtubule-disrupting agent, in a panel of cancer cell lines.

RESULTS: PBOX-15 treatment was associated with significant cell kill and increased radiosensitivity in all three cell lines tested. The number of surviving cells in response to the combined treatment was significantly less than PBOX -15 alone in 22Rv1 cells. In these cells, radiosensitisation correlated with induction of G2/M cell cycle arrest by PBOX-15. The compound sustained its activity and increased HIF-1Α expression under hypoxic conditions. PBOX-15 prevented onset of hypoxia-induced radioresistance in hypoxic prostate cells and reduced the surviving fraction of irradiated hypoxic cells to levels similar to those achieved under aerobic conditions.

METHODS: Clonogenic assays were used to determine sensitivity of a panel of cancer cell lines (22Rv1, A549, U87) to PBOX-15 alone or in combination with a single 2Gy dose fraction. Induction of cell cycle arrest and apoptosis was investigated in 22Rv1 prostate cancer cells. The cytotoxic properties of the compound under hypoxic conditions were correlated with Hypoxia Inducible Factor 1 alpha (HIF-1Α) gene and protein expression levels and its radiosensitisation potential was investigated in hypoxic 22Rv1 using clonogenic assays.

CONCLUSIONS: This preliminary data identifies the potential of PBOX-15 as a novel radiosensitising agent for the management of solid tumours and eradication of hypoxic cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the role of the C1772T polymorphisms in exon 12 of the Hypoxia-inducible factor-1 alpha (HIF-1alpha) gene C1772T genotype in prostate cancer (PCa) and amplification of the hypoxic response. We identified the heterozygous germline CT genotype as an increased risk factor for clinically localised prostate cancer (Odds ratio = 6.2; p < 0.0001). While immunostaining intensity for HIF-1alpha and VEGF was significantly enhanced in 75% of PCa specimens when compared to matched benign specimens (p < 0.0001), the CT genotype did not modulate the kinetics of HIF-1alpha protein expression in hypoxia in vitro, and was not associated with enhanced expression of hypoxic biomarkers. This study provides the first evidence of an increased risk for clinically localised prostate cancer in men carrying the C1772T HIF-1alpha gene polymorphism. Although our results did not suggest an association between expression of hypoxic biomarkers and genotype status, the correlation may merit further investigation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: The aberrant transcription in cancer of genes normally associated with embryonic tissue differentiation at various organ sites may be a hallmark of tumour progression. For example, neuroendocrine differentiation is found more commonly in cancers destined to progress, including prostate and lung. We sought to identify proteins which are involved in neuroendocrine differentiation and differentially expressed in aggressive/metastatic tumours.

RESULTS: Expression arrays were used to identify up-regulated transcripts in a neuroendocrine (NE) transgenic mouse model of prostate cancer. Amongst these were several genes normally expressed in neural tissues, including the pro-neural transcription factors Ascl1 and Hes6. Using quantitative RT-PCR and immuno-histochemistry we showed that these same genes were highly expressed in castrate resistant, metastatic LNCaP cell-lines. Finally we performed a meta-analysis on expression array datasets from human clinical material. The expression of these pro-neural transcripts effectively segregates metastatic from localised prostate cancer and benign tissue as well as sub-clustering a variety of other human cancers.

CONCLUSION: By focussing on transcription factors known to drive normal tissue development and comparing expression signatures for normal and malignant mouse tissues we have identified two transcription factors, Ascl1 and Hes6, which appear effective markers for an aggressive phenotype in all prostate models and tissues examined. We suggest that the aberrant initiation of differentiation programs may confer a selective advantage on cells in all contexts and this approach to identify biomarkers therefore has the potential to uncover proteins equally applicable to pre-clinical and clinical cancer biology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Integrins (ITGs) are key elements in cancer biology, regulating tumor growth, angiogenesis and lymphangiogenesis through interactions of the tumor cells with the microenvironment. Moving from the hypothesis that ITGs could have different effects in stage II and III colon cancer, we tested whether a comprehensive panel of germline single-nucleotide polymorphisms (SNPs) in ITG genes could predict stage-specific time to tumor recurrence (TTR). A total of 234 patients treated with 5-fluorouracil-based chemotherapy at the University of Southern California were included in this study. Whole-blood samples were analyzed for germline SNPs in ITG genes using PCR-restriction fragment length polymorphism or direct DNA sequencing. In the multivariable analysis, stage II colon cancer patients with at least one G allele for ITGB3 rs4642 had higher risk of recurrence (hazard ratio (HR)=4.027, 95% confidence interval (95% CI) 1.556-10.421, P=0.004). This association was also significant in the combined stage II-III cohort (HR=1.975, 95% CI 1.194-3.269, P=0.008). The predominant role of ITGB3 rs4642 in stage II diseases was confirmed using recursive partitioning, showing that ITGB3 rs4642 was the most important factor in stage II diseases. In contrast, in stage III diseases the combined analysis of ITGB1 rs2298141 and ITGA4 rs7562325 allowed to identify three distinct prognostic subgroups (P=0.009). The interaction between stage and the combined ITGB1 rs2298141 and ITGA4 rs7562325 on TTR was significant (P=0.025). This study identifies germline polymorphisms in ITG genes as independent stage-specific prognostic markers for stage II and III colon cancer. These data may help to select subgroups of patients who may benefit from ITG-targeted treatments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human exposure to persistent organic pollutants (POPs) is a certainty, even to long banned pesticides like o,p′-dichlorodiphenyltrichloroethane (o,p′-DDT), and its metabolites p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), and p,p′-dichlorodiphenyldichloroethane (p,p′-DDD). POPs are known to be particularly toxic and have been associated with endocrine-disrupting effects in several mammals, including humans even at very low doses. As environmental estrogens, they could play a critical role in carcinogenesis, such as in breast cancer. With the purpose of evaluating their effect on breast cancer biology, o,p′-DDT, p,p′-DDE, and p,p′-DDD (50–1000 nM) were tested on two human breast adenocarcinoma cell lines: MCF-7 expressing estrogen receptor (ER) α and MDA-MB-231 negative for ERα, regarding cell proliferation and viability in addition to their invasive potential. Cell proliferation and viability were not equally affected by these compounds. In MCF-7 cells, the compounds were able to decrease cell proliferation and viability. On the other hand, no evident response was observed in treated MDA-MB-231 cells. Concerning the invasive potential, the less invasive cell line, MCF-7, had its invasion potential significantly induced, while the more invasive cell line MDA-MB-231, had its invasion potential dramatically reduced in the presence of the tested compounds. Altogether, the results showed that these compounds were able to modulate several cancer-related processes, namely in breast cancer cell lines, and underline the relevance of POP exposure to the risk of cancer development and progression, unraveling distinct pathways of action of these compounds on tumor cell biology.