633 resultados para Cambrian explosion
Resumo:
Référence bibliographique : Rol, 55030
Resumo:
A new analytical approach for measuring methane in tissues is presented. For the first time, the use of in situ-produced, stably labelled CDH(3) provides a reliable and precise methane quantification. This method was applied to postmortem samples obtained from two victims to help determine the explosion origin. There was evidence of methane in the adipose tissue (82 nmol/g) and cardiac blood (1.3 nmol/g) of one victim, which corresponded to a lethal methane outburst. These results are discussed in the context of the available literature to define an analysis protocol for application in the event of a gas explosion.
Resumo:
An accidental burst of a pressure vessel is an uncontrollable and explosion-like batch process. In this study it is called an explosion. The destructive effectof a pressure vessel explosion is relative to the amount of energy released in it. However, in the field of pressure vessel safety, a mutual understanding concerning the definition of explosion energy has not yet been achieved. In this study the definition of isentropic exergy is presented. Isentropic exergy is the greatest possible destructive energy which can be obtained from a pressure vessel explosion when its state changes in an isentropic way from the initial to the final state. Finally, after the change process, the gas has similar pressure and flow velocity as the environment. Isentropic exergy differs from common exergy inthat the process is assumed to be isentropic and the final gas temperature usually differs from the ambient temperature. The explosion process is so fast that there is no time for the significant heat exchange needed for the common exergy.Therefore an explosion is better characterized by isentropic exergy. Isentropicexergy is a characteristic of a pressure vessel and it is simple to calculate. Isentropic exergy can be defined also for any thermodynamic system, such as the shock wave system developing around an exploding pressure vessel. At the beginning of the explosion process the shock wave system has the same isentropic exergyas the pressure vessel. When the system expands to the environment, its isentropic exergy decreases because of the increase of entropy in the shock wave. The shock wave system contains the pressure vessel gas and a growing amount of ambient gas. The destructive effect of the shock wave on the ambient structures decreases when its distance from the starting point increases. This arises firstly from the fact that the shock wave system is distributed to a larger space. Secondly, the increase of entropy in the shock waves reduces the amount of isentropic exergy. Equations concerning the change of isentropic exergy in shock waves are derived. By means of isentropic exergy and the known flow theories, equations illustrating the pressure of the shock wave as a function of distance are derived. Amethod is proposed as an application of the equations. The method is applicablefor all shapes of pressure vessels in general use, such as spheres, cylinders and tubes. The results of this method are compared to measurements made by various researchers and to accident reports on pressure vessel explosions. The test measurements are found to be analogous with the proposed method and the findings in the accident reports are not controversial to it.
Resumo:
One of the main industries which form the basis of Russian Economical structure is oil and gas. This industry is also playing a significant role for CIS countries. Oil and gas industry is developing intensively attracting foreign investments. This situation is providing sustainable development of machinery production for hazardous areas. Operating in oil and gas areas is always related with occurrence of explosion gas atmospheres. Machines for hazardous areas must be furnished with additional protection of different types. Explosion protection is regulated with standards according to which equipment must be manufactured. In Russia and CIS countries explosion-proof equipment must be constructed in compliance with GOST standards. To confirm that equipment is manufactured according to standards’ requirements and is safe and reliable it must undergo the approval procedure. Certification in Russia is governed by Federal Laws and legislation. Each CIS country has its own approval certificates and permissions for operating in hazardous areas.
Resumo:
The present study introduce two pretreatment technologies which are torrefaction and steam explosion, and compare energy balance for both technologies to investigate and compare the use of these technologies to improve pelletization. In this research, torrefaction and steam explosion pretreatments were accomplished on the mixed small diameter wood (70%) with moisture content of 40 %, and logging residues (30%) with moisture content of 45 % at temperature 230 ̊C, and treatment duration 10 min. Competing methods were evaluated, and the results showed higher volumetric energy for steam explosion pellet than torrefied pellet.
Resumo:
This essay reviews the decision-making process that led to India exploding a nuclear device in May, 1974. An examination of the Analytic, Cybernetic and Cognitive Theories of decision, will enable a greater understanding of the events that led up to the 1974 test. While each theory is seen to be only partially useful, it is only by synthesising the three theories that a comprehensive account of the 1974 test can be given. To achieve this analysis, literature on decision-making in national security issues is reviewed, as well as the domestic and international environment in which involved decisionmakers operated. Finally, the rationale for the test in 1974 is examined. The conclusion revealed is that the explosion of a nuclear device by India in 1974 was primarily related to improving Indian international prestige among Third World countries and uniting a rapidly disintegrating Indian societal consensus. In themselves, individual decision-making theories were found to be of little use, but a combination of the various elements allowed a greater comprehension of the events leading up to the test than might otherwise have been the case.
Resumo:
During the Upper Cambrian there were three mass extinctions, each of which eliminated at least half of the trilobite families living in North American shelf seas. The Nolichucky Formation preserves the record of one of these extinction events at the base of the Steptoean Stage. Sixty-six trilobite collections were made from five sections In Tennessee and Virginia. The lower Steptoean faunas are assigned to one low diversity, Aphelaspis-dominated biofacies, which can be recognized in several other parts of North America. In Tennessee, the underlying upper Marjuman strata contain two higher diversity biofacies, the Coosella-Glaphyraspis Biofacies and the Tricrepicephalus-Norwoodiid Biofacies. At least four different biofacies are present in other parts of North America: the Crepicephalus -Lonchocephalus Biofacies, the Kingstonia Biofacies, the Cedaria Biofacies, and the Uncaspis Biofacies. A new, species-based zonation for the Nolichucky Formation imcludes five zones, three of which are new. These zones are the Crepicephalus Zone, the Coosella perplexa Zone, the Aphelaspis buttsi Zone, the A. walcotti Zone and the A. tarda Zone. The Nolichucky Formation was deposited within a shallow shelf basin and consists largely of subtidal shales with stormgenerated carbonate interbeds. A relative deepening is recorded In the Nolichucky Formation near the extinction, and is indicated In some sections by the appearance of shale-rich, distal storm deposits above a carbonate-rich, more proximal storm deposit sequence. A comparable deepening-upward sequence occurs near the extinction in the Great Basin of southwestern United States and in central Texas, and this suggests a possible eustatic control. In other parts of North America, the extinction IS recorded In a variety of environmental settings that range from near-shore to slope. In shelf environments, there is a marked decrease in diversity, and a sharp reduction in biofacies differentiation. Although extinctions do take place in slope environments, there IS no net reduction in diversity because of the immigration of several new taxa.
Resumo:
The Upper Cambrian Pika Formation in the southern Canadian Rocky Mountains forms a complete lithologic Grand Cycle. The overall pattern of deposition is one of shallowing upwards from a subtidal, muddy, storm-influenced basin to a shallow carbonate bank. The Pika passes gradationally into the overlying inter- to supratidal siliciclastics of the Arctomys Formation. This transition probably reflects a fall in relative sea level. 2 Twenty seven collections from three sections yielded trilobites. The faunas are assigned to two low-diversity biofacies: the Marjumia - Spencella Biofacies and the GZyphaspis - menomoniid Biofacies. In contrast to biofacies of deeper, open-shelf environments, such as the Wheeler and Marjum formations of Utah, the Pika biofacies lack agnostid trilobites. Consequently, agnostid-based zonations defined elsewhere in North America cannot be applied to the Pika and a new sequence of three zones and one informal fauna is proposed for use in inner shelf facies. Eleven species belonging to six genera are described and illustrated. The species Marjumia bagginsi is new. Other genera present are: Bolaspidella, Knechtelia, GZyphaspis and Spencella, in addition to a number of indeterminate forms
Resumo:
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
Resumo:
Self-consistent-field calculations for the total potential energy of highly ionized N_2 molecules are presented. We compare these calculations to the experimentally observed energy released in the Coulomb explosion of ionized N_2 molecules created after collision with fast heavy ions. The most important electronic states of the fragment ions are determined.
Resumo:
AEA Technology has provided an assessment of the probability of α-mode containment failure for the Sizewell B PWR. After a preliminary review of the methodologies available it was decided to use the probabilistic approach described in the paper, based on an extension of the methodology developed by Theofanous et al. (Nucl. Sci. Eng. 97 (1987) 259–325). The input to the assessment is 12 probability distributions; the bases for the quantification of these distributions are discussed. The α-mode assessment performed for the Sizewell B PWR has demonstrated the practicality of the event-tree method with input data represented by probability distributions. The assessment itself has drawn attention to a number of topics, which may be plant and sequence dependent, and has indicated the importance of melt relocation scenarios. The α-mode failure probability following an accident that leads to core melt relocation to the lower head for the Sizewell B PWR has been assessed as a few parts in 10 000, on the basis of current information. This assessment has been the first to consider elevated pressures (6 MPa and 15 MPa) besides atmospheric pressure, but the results suggest only a modest sensitivity to system pressure.
Resumo:
Various methods of assessment have been applied to the One Dimensional Time to Explosion (ODTX) apparatus and experiments with the aim of allowing an estimate of the comparative violence of the explosion event to be made. Non-mechanical methods used were a simple visual inspection, measuring the increase in the void volume of the anvils following an explosion and measuring the velocity of the sound produced by the explosion over 1 metre. Mechanical methods used included monitoring piezo-electric devices inserted in the frame of the machine and measuring the rotational velocity of a rotating bar placed on the top of the anvils after it had been displaced by the shock wave. This last method, which resembles original Hopkinson Bar experiments, seemed the easiest to apply and analyse, giving relative rankings of violence and the possibility of the calculation of a “detonation” pressure.