999 resultados para Camarão marinho
Resumo:
Farming of marine shrimp is growing worldwide and the Litopenaeus vannamei (L. vannamei) shrimp is the species most widely cultivated. Shrimp is an attractive food for its nutritional value and sensory aspects, being essential the maintenance of this attributes throughout storage, which takes place largely under freezing. The aim of this research was to evaluate quality characteristics of Litopenaeus vannamei shrimp, during freezing storage and to verify the effect of rosemary (Rosmarinus officinalis) adding. Considering the reutilization of processing shrimp wastes, total carotenoids analysis were conducted in waste of Litopenaeus vannamei shrimp and in the flour obtained after dryer. Monthly physicochemical and sensorial analysis were carried out on shrimp stored at 28,3 ± 3,8ºC for 180 days. Samples were placed in polyethylene bags and were categorized as whole shrimp (WS), peeled shrimp (PS), and PS with 0,5% dehydrated rosemary (RS). TBARS, pH, total carotenoid and sensorial Quantitative Descriptive Analysis (QDA) were carried out. Carotenoid total analysis was conducted in fresh wastes and processed flour (0 day) and after 60, 120 and 180 days of frozen storage. After 180 days, RS had lower pH (p = 0.001) and TBARS (p = 0.001) values and higher carotenoids (p = 0.003), while WS showed higher carotenoid losses. Sensory analysis showed that WS were firmer although rancid taste and smell were perceived with greater intensity (p = 0.001). Rancid taste was detected in RS only at 120 days at significantly lower intensity (p = 0.001) than WS and PS. Fresh wastes had 42.74μg/g of total carotenoids and processed flour 98.51μg/g. After 180 days of frozen storage, total carotenoids were significantly lower than 0 day (p<0,05). The addition of rosemary can improve sensory quality of frozen shrimp and reduce nutritional losses during storage. Shrimp wastes and flour of L. vannamei shrimp showed considerable astaxanthin content however, during storage it was observed losses in this pigment
Resumo:
Sulfated Polysaccharides with unique chemical structures and important biological activities has been found in a diversity of sea invertebrates. For that, to exist a huger interest on the biotechnology field in the research theses sulfated compounds isolated from sea organisms. Despite the privileged brazilian position for these compounds attainment, there are still a few scientific informations about the isolated substances and their biological activities. A head the displayed, the present work has for objectives, to evaluate the pharmacological properties of the glycosaminoglycans isolated from the sea shrimp Litopenaeus schimitti on homeostasis, blood coagulation, leukocytes migration and platelet/leukocyte adhesion. For this, yhe glycosaminoglycans were extracted from crustacean tissues by proteolysis, fractionation with acetone and later submitted to pharmacological assays. The crustacean tissues showed compounds heparin-like, with anticoagulant activity of 45 IU/mg and 90 IU/mg, respectively. These molecules showed low residual hemorrhagic effects in the tested concentration (100 µg/mL), when compared to unfractionated commercial heparin (UFH). Another dermatan sulfate-like compound, predominately constituted for disulfated disaccharides, was isolated from crustacean abdomen. This compound showed an efficient effect on leukocytes migration inhibition, in the concentration of 15 µg/mL, reducing the cellular infiltration in 65% when compared to the controlled animals. In this same concentration, the DS reduced in 60% the protein concentration of the peritoneal exudates. In the concentration, this compound of 0.5 mg/mL, it was capable to reduce in 40% platelet/leukocytes adhesion. Our data demonstrate that these sulfated polysaccharides isolated from the shrimp L. schimitti will can be used as bioactive compounds, appearing as active principles for pharmacological development, anticoagulants and inflammatory response regulators
Resumo:
O objetivo deste trabalho foi avaliar a remoção de compostos nitrogenados e fosfatados e da carga orgânica poluidora oriunda de cultivo heterotrófico de camarão marinho, por meio de reator anaeróbico. Foi construído um reator com fluxo ascendente, em que os efluentes de entrada e saída foram avaliados continuamente durante 120 horas, com três repetições. Os parâmetros físicos e químicos avaliados foram: temperatura, pH, condutividade, ortofosfato, nitrito, nitrato, amônia, demanda química de oxigênio e sólidos totais. O reator permaneceu estável, com boas condições de retenção de sólidos. O reator anaeróbico removeu 96,7% do nitrogênio amoniacal e 91% de ortofosfatos dos efluentes de cultivo de camarão marinho, o que mostra que os efluentes tratados estão dentro dos limites estabelecidos pela legislação.
Resumo:
A identificação e o monitoramento de microorganismos aquáticos, como bactérias e microalgas, tem sido uma tarefa árdua e morosa. Técnicas convencionais, com uso de microscópios e corantes, são complexas, exigindo um grande esforço por parte dos técnicos e pesquisadores. Uma das maiores dificuldades nos processos convencionais de identificação via microscopia é o elevado número de diferentes espécies e variantes existentes nos ambientes aquáticos, muitas com semelhança de forma e textura. O presente trabalho tem por objetivo o desenvolvimento de uma metodologia para a caracterização e classificação de microorganismos aquáticos (bactérias e microalgas), bem como a determinação de características cinemáticas, através do estudo da mobilidade de microalgas que possuem estruturas que permitem a natação (flagelos). Para caracterização e reconhecimento de padrões as metodologias empregadas foram: o processamento digital de imagens e redes neurais artificiais (RNA). Para a determinação da mobilidade dos microorganismos foram empregadas técnicas de velocimetria por processamento de imagens de partículas em movimento (Particle Tracking Velocimetry - PTV). O trabalho está dividido em duas partes: 1) caracterização e contagem de microalgas e bactérias aquáticas em amostras e 2) medição da velocidade de movimentação das microalgas em lâminas de microscópio. A primeira parte envolve a aquisição e processamento digital de imagens de microalgas, a partir de um microscópio ótico, sua caracterização e determinação da densidade de cada espécie contida em amostras. Por meio de um microscópio epifluorescente, foi possível, ainda, acompanhar o crescimento de bactérias aquáticas e efetuar a sua medição por operadores morfológicos. A segunda parte constitui-se na medição da velocidade de movimentação de microalgas, cujo parâmetro pode ser utilizado como um indicador para se avaliar o efeito de substâncias tóxicas ou fatores de estresse sobre as microalgas. O trabalho em desenvolvimento contribuirá para o projeto "Produção do Camarão Marinho Penaeus Paulensis no Sul do Brasil: Cultivo em estruturas Alternativas" em andamento na Estação Marinha de Aquacultura - EMA e para pesquisas no Laboratório de Ecologia do Fitoplâncton e de Microorganismos Marinhos do Departamento de Oceanografia da FURG. O trabalho propõe a utilização dos níveis de intensidade da imagem em padrão RGB e oito grandezas geométricas como características para reconhecimento de padrões das microalgas O conjunto proposto de características das microalgas, do ponto de vista de grandezas geométricas e da cor (nível de intensidade da imagem e transformadas Fourier e Radon), levou à geração de indicadores que permitiram o reconhecimento de padrões. As redes neurais artificiais desenvolvidas com topologia de rede multinível totalmente conectada, supervisionada, e com algoritmo de retropropagação, atingiram as metas de erro máximo estipuladas entre os neurônios de saída desejados e os obtidos, permitindo a caracterização das microalgas.
Resumo:
Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture
Resumo:
The main specie of marine shrimp raised at Brazil and in the world is Litopenaeus vannamei, which had arrived in Brazil in the `80s. However, the entry of infectious myonecrosis virus (IMNV), causing the infectious myonecrosis disease in marine shrimps, brought economic losses to the national shrimp farming, with up to 70% of mortality in the shrimp production. In this way, the objective was to evaluate the survival of shrimps Litopenaeus vannamei infected with IMNV using the non parametric estimator of Kaplan-Meier and a model of frailty for grouped data. It were conducted three tests of viral challenges lasting 20 days each, at different periods of the year, keeping the parameters of pH, temperature, oxygen and ammonia monitored daily. It was evaluated 60 full-sib families of L. vannamei infected by IMNV in each viral challenge. The confirmation of the infection by IMNV was performed using the technique of PCR in real time through Sybr Green dye. Using the Kaplan-Meier estimator it was possible to detect significant differences (p <0.0001) between the survival curves of families and tanks and also in the joint analysis between viral challenges. It were estimated in each challenge, genetic parameters such as genetic value of family, it`s respective rate risk (frailty), and heritability in the logarithmic scale through the frailty model for grouped data. The heritability estimates were respectively 0.59; 0.36; and 0.59 in the viral challenges 1; 2; and 3, and it was also possible to identify families that have lower and higher rates of risk for the disease. These results can be used for selecting families more resistant to the IMNV infection and to include characteristic of disease resistance in L. vannamei into the genetic improvement programs
Resumo:
The shrimp Litopenaeus vannamei has been grown in highly variable environments, especially in relation to salinity and water temperature. The adjustment to such conditions mainly involves changes in behavior, physiology, particularly in the immune response. This may consequently reduce the welfare of these animals. Despite the widespread farming of the species, little is known about their behavioral and physiological responses under stressful conditions. Thus, the objective of this study was to assess the influence of different salinities and temperatures in the behavior of the marine shrimp L. vannamei, and its relation to the total hemocytes count. In the laboratory, juvenile shrimp were kept in glass aquaria with a closed water recirculation system, continuous aeration and filtration, and under a 12:12 h light/dark cycle. Behavioral observations occurred 1, 4, 7 and 10 h after the start of each phase (light or dark). To assess the influence of salinity, shrimp were first acclimated and then observed at 2, 30 or 50 ppm salinity water, while temperatures tested were 18, 28 and 33 ° C. At the end of each experiment (30 days), shrimp hemolymph was collected for subsequent total hemocytes count (THC), a parameter used to assess stress. In general, feeding behavior was modified under lower salinity and temperature, with reduced values in feeding, exploration and digestive tract filling. Inactivity and burrowing were prevalent under extreme conditions water salinity and temperature, respectively: 2 and 50 ppm and 18 and 33 ° C; crawling was also less frequent under these conditions. In regards to light/dark cycle, shrimp were more active during the dark phase (crawling and swimming), while burrowing was higher during the light phase, regardless of salinity or temperature of the water. Inactivity behavior did not vary according to the light/dark cycle. Moreover, the total hemocytes count (THC) was reduced under 2 and 50 ppm salinity and 18 ° C temperature. Farming of L. vannamei under extremely low or high salinities and low temperatures is harmful. This suggests the species must be cultivated in salinities closer to those of the sea as well as at high temperatures, which seems to be ideal for a management focused on animal welfare, therefore, producing healthier shrimp
Resumo:
The lower course of Piranhas-Assu river, located in the north coast of Rio Grande do Norte, Brazil, arouses a keen interest as a study field, once it concentrates, besides petroleum and gas exploration, activities related to shrimp culture, salt and horticulture, factors that also deserve special attention. Thus, the awareness of the study field environmental stage demands studies from researchers and discernment from society, as a way of understanding the inter-relation between environment and men. Therefore, this work attempts at understanding and studying the dynamics of land use in the lower course of Piranhas-Assu river, through a multitemporal analysis of present and past, accomplishing future projections through simulation models. The work is divided in stages that include the research, analysis, interpretation of results, and the generation of simulation models, to analyze the landscape tendencies, making possible to identify indicators which cause such changes in the lower course of the river. From Geographical Database, the necessary exploratory analyses were accomplished to the following items: land use evolution, natural and environmental vulnerability, multiple geodiversity indexes, and preparation of the data to be used in the simulation model. Later, the construction of the landscape simulation model was conducted. Sequentially, simulations of future sceneries were accomplished through the execution of the model in a specific software environment. Last, the analyses of landscape tendencies in the study field were carried out. The lower course of Piranhas-Assu River didn't show any intense dynamics in landscape changing, once in the period taken into account (from 1988 to 2004) class stability proved to be superior to its transformations. Activities related to agriculture and livestock are the ones that influence, mostly, the landscape dynamics. The production of sea shrimp and petroleum also infers in the landscape, although in smaller proportion. INCRA s public policies excessively determined the dynamics of the landscape in the lower course of Piranhas-Assu River, RN. In respect to its natural vulnerability, the lower course of Piranhas-Assu River, RN, features more vulnerable than stable areas. The landscape simulation, in the first taken period (2004-2009), indicated considerable increases and decreases of antropic activities, if compared to its sequent periods (2009-2014, 2014-2019 and 2019-2024). The simulation, in a wider analysis, showed that the determining factors for the space mobility of antropic activities, in the focused area, are related to the pre-existence of communities with agricultural capability and to the existence of access routes and drainage. Considering the area that features fixed and mobile dunes, located in Porto do Mangue district, we recommend its conversion into a conservation area
Resumo:
Este estudo teve o objetivo de conhecer a diversidade do microfitoplâncton, assim como sua variação nictemeral relacionada aos fatores ambientais do estuário do rio Curuçá (Curuçá - PA). Foram coletadas 12 amostras de fitoplâncton, ao longo de 24 horas, em 3 pontos de amostragem localizados próximo a uma fazenda de cultivo camarão marinho Litopnaeus vannamei em marés de sizígia, nos dias 14 e 15 de agosto/2004 e nos dias 24 e 25 de janeiro/2005. Foram determinadas a composição específica e densidade do microfitoplâncton (org.L-1) e realizadas análises de frequência de ocorrência, diversidade e equitabilidade, agrupamento e componentes principais (ACP). Os parâmetros físico-químicos não apresentaram uma variabilidade significativa entre os meses de coleta, porém observa-se uma importante influência do regime pluviométrico sobre a variação dos valores de salinidade, registrando os menores valores durante o mês de janeiro/05 e os maiores em agosto/04. Foram registrados 170 táxons pertencentes às Divisões Bacillariophyta (149), Dinophyta (16), Chlorophyta (3) e Cyanobacteria (2).O filo Bacillariophyta foi predominante em número de espécies, frequência de ocorrência e densidade (97.59%). Poucas espécies apresentam elevados índices de abundância, sendo que no mês de agosto a comunidade microfitoplanctônica é dominada por Bacteriastrum hyalinum, Bellerochea horologicalis, Chaetoceros curvisetus, Dimerograma dubium, Dytilium brigtwelli, Pseudo-nitzschia seriata e Skeletonema costatum. No mês de janeiro predominam Chaetoceros pseudocrinitus, Chaetoceros curvisetus e Skeletonema costatum. Houve o predomínio de espécies marinhas planctônicas neríticas, marinha planctônica nerito-oceânica, e marinha-planctônica oceânica. A diversidade específica oscilou de 0.7591 bits.org-1 e 1.3314 bits. org-1, caracterizada, de um modo geral, por uma diversidade variando de muito baixa a baixa, apresentando uma estrutura pouco diversificada. A variação dos parâmetros físico-químicos e da densidade das espécies foi o fator determinante no agrupamento das amostras, formando-se dois grandes grupos, o primeiro composto por amostras do mês de agosto e o segundo grupo composto por amostras do mês de janeiro. A análise de componentes principais indicou que, apesar de os parâmetros físico-químicos apresentarem baixa variabilidade espacial e entre os meses de coleta, a variação do índice de pluviosidade e da salinidade foi muito importante na variação da densidade de grande parte das espécies, provocando um aumento da densidade fitoplanctônica no mês de janeiro.
Resumo:
A carcinicultura amazônica possui potencial produtivo que favorece seu desenvolvimento e está atualmente direcionada para o camarão marinho Litopenaeus vannamei. Como a produção da carcinicultura marinha é condicionada à qualidade dos parâmetros físicos, químicos, biológicos, hidrológicos e sanitários da água e dos sedimentos, aliado as variações entre os períodos sazonais; um adequado acompanhamento dessas variáveis no cultivo é indispensável para a sua produtividade. Além disso, para verificar a viabilidade das técnicas de manejo utilizadas, recentemente se destaca o uso da estatística na análise dos dados das fazendas de cultivo de camarão, para modelar os parâmetros relacionados ao cultivo e, assim melhorar a produção e diminuir custos. Deste modo, para avaliar a influência da sazonalidade da região amazônica neste processo produtivo, foi realizados duas abordagens: 1) foram analisados os dados de produção dos últimos cinco anos para verificar a interação entre sazonalidade e a produtividade e 2) O monitoramento de dois ciclos de cultivo, o primeiro de janeiro a abril de 2011 (período chuvoso), e o segundo de julho a novembro de 2011 (período menos chuvoso para avaliar as mudanças sazonais na qualidade da água e no desempenho zootécnico do camarão marinho, e a interação deste processo no ambiente adjacente. O estudo foi realizado em uma fazenda comercial em Curuçá/PA com lâmina d’água de 4 ha, sendo quatro viveiros com 1 ha cada, que são estocados alternadamente com criação intensiva da espécie. A série histórica revelou que a sazonalidade da região amazônica altera a qualidade da água no cultivo do camarão marinho, ocorrendo diferenciação evidente entre os períodos analisados, verificando-se uma melhor produção no período menos chuvoso; fato não observado no ano de 2011, onde o desempenho zootécnico ocorreu dentro dos padrões adequados para o cultivo nos dois períodos sazonais e se mostrou economicamente viável em ambos os períodos de cultivo. Os índices de qualidade da água refletiram uma interação entre os ambientes avaliados, o que sugere melhorias na utilização da bacia de sedimentação.
Resumo:
The objective of this work was to evaluate the performance of Pacific marine shrimp (Litopenaeus vannamei) and tilapia (Oreochromis niloticus), in a polyculture in tanks subjected to different stocking densities and feeding strategies, in comparison with monoculture. Two experiments were performed, at the same time, in a completely randomized design with three treatments and four replicates each. Treatments for experiment I were: monoculture with 10 shrimp per m² (10S:0T); polyculture with 10 shrimp and 0.5 tilapia per m² (10S:0.5T); and polyculture with 10 shrimp and 1 tilapia per m² (10S:1T). Shrimp was the main crop, and feed was provided based on shrimp biomass. Treatments for experiment II were: monoculture with 2 tilapia per m² (2T:0S); polyculture with 2 tilapia and 2.5 shrimp per m² (2T:2.5S); and polyculture with 2 tilapia and 5 shrimp per m² (2T:5S). Tilapia was the main crop, and feed was provided based on fish requirements. In the experiment I, tilapia introduction to shrimp culture resulted in lower shrimp growth and poor feed conversion rate. In experiment II, shrimp introduction to tilapia culture did not interfere with fish performance. Polyculture is more efficient with the combination of 2 tilapia and 2.5 or 5 shrimp per m² and feed based on fish requirements.
Resumo:
The study aims to evaluate the performance and identify lesions of agonistic interactions of Macrobrachium rosenbergii in different densities cages (chapter 1); compare the growth performance of shrimp M. rosenbergii and Litopenaus vannamei cages (chatper 2); in addition the study aimed at identifying the knowledge and practices of a traditional community of farmers Bebida-Velha, in the city of Pureza / RN, practicing rural family and aquaculture, as well as tracing the community socioeconomic profile and evaluate the management that these farmers use in shrimp farming Macrobrachium rosenbergii (chapter 3). To perform the experiments (chapter 1 and 2) shrimp species L. vannamei and M. rosenbergii were weighed on a digital scale and transferred to cultures in cages. The cages had 1m³, with 5mm mesh between us and were closed on top with screen to avoid predators (birds, insects). The animals remained in adaptation for fifteen days before the start of data collection (each experiment). Both experiments lasted seventy days, totaling eighty-five days cultivation. During the cultures, animals were fed pelleted feed for shrimp at 10% of their biomass with 35% crude protein, offered in feed trays twice a day during the hours (7:00 am and 14:00 pm). The remnants in the tray were removed after 2h of permanence to calculate intake. To determine the performance parameters, some samples were taken every 10 days. The results of both experiments were analyzed using the STATISTIC 7.0 (2004). In Chapter 1 experiment were applied5 treatments were applied with 5 replications each: D5 - 5 animals/m2 ; D10 - 10 animals/m2 ; D15 - 15 animals/m2 ; D20 - 20 animals/m2 ; D25 - 25 animals/m2 . To this, were distributed 25 cages randomly in two masonry nurseries. The end of the experiment the lesions were verified and quantified. The chapter 2 experiment began when the shrimp reached the same age (eighty-four days) and was used the density of 25 shrimp / m2 with 4 repetitions. For the realization of chapter 3 were applied semi-structured interviews by direct approach of Bebida Velha of settlers practicing aquaculture activity, tilapia producers and community shrimp. Data were tabulated and analyzed according to the responses obtained by the participants. Therefore, the amount of damage increased with increasing stocking density. The density of 10 freshwater shrimp/m² showed the best conditions for a better performance in cages. It can be concluded that in cages, the cultivation of species of fresh water shrimp M. rosenbergii had better zootechnical indexes than the cultivation of marine shrimp species L. 9 vannamei. It was possible to verify that the activities of which the interviewees practice guarantee a good quality of life and income for them. We find that respondents have traditional and local knowledge, and also may be interested in the cultivation of the species M. rosenbergii.
Resumo:
Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture
Resumo:
Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture
Resumo:
This study evaluates the influence of depth and environmental parameters on the development of Gracilaria birdiae Plastino & Oliveira (Gracilariaceae Rhodophyta) in an organic shrimp pound (Litopenaeus vannamei) under euthrophical conditions. PVC structures (module) witch four ropes laden with 150 g of macroalgae each, were kept during 35 days at three different depths (surface, 10 and 20 cm depth). Wet biomass weighing and environmental parameters (temperature, salinity, turbidity, pH, transparence, precipitation, evaporation, insolation, accumulated solar radiation, nitrite, nitrate, ammonium and orthophosphate) were measured weekly. At all three proposed depths, the macroalgae displayed a higher biomass at the end of experiment than at the initial inoculations. The module kept at a 10 cm depth presented the greatest average biomass (186,3), followed by that kept at 20 cm (180,4 g) and the surface module (169,9 g). Biomass variations showed algae to suffer the direct effects of depths. Biomass loss was associated with the factors that influence light penetration, such as sediment deposits above the thallus, rate of evaporation and precipitation. The smallest loses occurred in the algae kept on surface (0,16%), followed by the algae kept at 20 cm (0,20%) and 10 cm (0,22%). The specific growth rate (SGR) of G. birdiae showed no significant difference between the three depths nor the sample periods. Nevertheless, the modules kept at 10 and 20 cm depths presented similar growth evolution, both growing 0,38%·per day-1, while the module kept on surface had an average SGR of 0,36%·day-1. The models related to growth rate demonstrated temperature, salinity, pH, orthophosphate, ammonium, precipitation and turbidity as the principal environmental parameters influencing the development of G. birdiae