996 resultados para Calcium carbonate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The precipitation of calcium carbonate in water has been examined using a combination of molecular dynamics and umbrella sampling. During 20 ns molecular dynamics trajectories at elevated calcium carbonate concentrations, amorphous particles are observed to form and appear to be composed of misaligned domains of vaterite and aragonite. The addition of further calcium ions to these clusters is found to be energetically favorable and virtually barrierless. By contrast, there is a large barrier to the addition of calcium to small calcite crystals. Thus, even though calcite nanocrystals are stable in solution, at high supersaturations, particles of amorphous material form because this material grows much faster than ordered calcite nanocrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing levels of CO2 and H+ proton in the rhizosphere from some legumes may play an important role in calcite dissolution of calcareous salt affected soils. Soils planted with white and brown varieties of cowpea (Vigna unguiculata L.) and hyacinth bean (Dolichos lablab L.) relying on either fertilizer N (KNO3) or N-fixation were compared against soils to which gypsum was applied and a control without plants and gypsum application to study the possibility of Ca2+ release from calcite and Na+ leaching. As compared to plants relying on inorganic N, leachates from all pore volumes (0·5, 1·0, 1·5, 2·0 pore volume) in lysimeters planted with N-fixing hyacinth bean contained significantly higher concentrations of HCO with lower concentrations from lysimeters planted with white cowpea relying on N-fixation. However, the lowest concentrations of HCO were recorded in the gypsum and control treatments. In initial leaching, lysimeters planted with N-fixing plants maintained similar leachate Ca2+ and Na+ concentrations compared to gypsum amended soils. However, gypsum amended soils were found to have a prolonged positive effect on Na+ removal. It might be concluded that some legumes that are known to fix N in calcareous salt affected soils may be an alternative ameliorant to the extremely expensive gypsum through calcite solubilization and a consequent release of Ca2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of soil organisms on metal mobility and bioavailability in soils is not currently fully understood. We conducted experiments to determine whether calcium carbonate granules secreted by the earthworm Lumbricus terrestris could incorporate and immobilise lead in lead- and calcium- amended artificial soils. Soil lead concentrations were up to 2000 mg kg-1 and lead:calcium ratios by mass were 0.5-8. Average granule production rates of 0.39 + 0.04 mgcalcite earthworm-1 day-1 did not vary with soil lead concentration. The lead:calcium ratio in granules increased significantly with that of the soil (r2 = 0.81, p = 0.015) with lead concentrations in granules reaching 1577 mg kg-1. X-ray diffraction detected calcite and aragonite in the granules with indications that lead was incorporated into the calcite at the surface of the granules. In addition to the presence of calcite and aragonite X-ray absorption spectroscopy indicated that lead was present in the granules mainly as complexes sorbed to the surface but with traces of lead-bearing calcite and cerussite. The impact that lead-incorporation into earthworm calcite granules has on lead mobility at lead-contaminated sites will depend on the fraction of total soil lead that would be otherwise mobile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissolution of CaCO3 granules secreted by earthworms in soil leaching columns was governed by soil pH and exchange sites available for Ca. Results indicate that granules could last for significant periods of time in soils and that, therefore, granules could be an important source of soil calcite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lumbricus terrestris earthworms exposed to 11 soils of contrasting properties produced, on average, 0.8 ± 0.1 mgCaCO3 earthworm−1 day−1 in the form of granules up to 2 mm in diameter. Production rate increased with soil pH (r2 = 0.68, p < 0.01). Earthworms could be a significant source of calcite in soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earthworms secrete granules of calcium carbonate. These are potentially important in soil biogeochemical cycles and are routinely recorded in archaeological studies of Quaternary soils. Production rates of calcium carbonate granules by the earthworm Lumbricus terrestris L. were determined over 27 days in a range of soils with differing chemical properties (pH, organic matter content, water holding capacity, bulk composition, cation exchange capacity and exchangeable cations). Production rate varied between soils, lay in the range 0–0.043 mmolCaCO3 (0–4.3 mg) earthworm−1 d−1 with an average rate of 8 × 10−3 mmolCaCO3 (0.8 mg) earthworm−1 d−1 and was significantly correlated (r = 0.68, P ≤ 0.01) with soil pH. In a second experiment lasting 315 days earthworms repeatedly (over periods of 39–57 days) produced comparable masses of granules. Converting individual earthworm granule production rates into fluxes expressed on per hectare of land per year basis depends heavily on estimates of earthworm numbers. Using values of 10–20 L. terrestris m−2 suggests a rate of 18– 3139 molCaCO3 ha−1 yr−1. Data obtained from flow-through dissolution experiments suggest that at near neutral pH, granule geometric surface areanormalised dissolution rates are similar to those for other biogenic and inorganic calcium carbonate. Fits of the data to the dissolution relationship r = k(1 − ˝)n where r = dissolution rate, k = a rate constant, ˝ = relative saturation and n = the reaction order gave values of k = 1.72 × 10−10 mol cm−2 s−1 and n = 1.8 for the geometric surface area-normalised rates and k = 3.51 × 10−13 mol cm−2 s−1 and n = 1.8 for the BET surface area-normalised rates. In 196 day leaching column experiments trends in granule dissolution rate referenced to soil chemistry corresponded to predictions made by the SLIM model for dissolution of limestone in soil. If soil solution approaches saturation with respect to calcium carbonate granule dissolution will slow or even stop and granules be preserved indefinitely. Granules have the potential to be a small but significant component of the biogeochemical cycling of C and Ca in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lumbricus terrestris earthworms produce calcium carbonate (CaCO3) granules with unknown physiological function. To investigate carbon sequestration potential, the influence of temperature and CO2 concentration ([CO2]) on CaCO3 production was investigated using three soils, five temperatures(3-20 C) and four atmospheric [CO2] (439-3793 ppm). Granule production rates differed between soils, but could not be related to any soil characteristics measured. Production rates increased with temperature, probably because of higher metabolic rate, and with soil CO2 concentration. Implications for carbon sequestration are discussed. CaCO3 production in earthworms is probably related to pH regulation of blood and tissue fluid in the high CO2 environment of the soil.