945 resultados para CYTOTOXICITY
Resumo:
Immune surveillance by cytotoxic lymphocytes against cancer has been postulated for decades, but direct evidence for the role of cytotoxic lymphocytes in protecting against spontaneous malignancy has been lacking. As the rejection of many experimental cancers by cytotoxic T lymphocytes and natural killer cells is dependent on the pore-forming protein perforin (pfp), we examined pfp-deficient mice for increased cancer susceptibility. Here we show that pfp-deficient mice have a high incidence of malignancy in distinct lymphoid cell lineages (T, B, NKT), indicating a specific requirement for pfp in protection against lymphomagenesis. The susceptibility to lymphoma was accentuated by simultaneous lack of expression of the p53 gene, mutations in which also commonly predispose to human malignancies, including lymphoma. In contrast, the incidence and age of onset of sarcoma was unaffected in p53-deficient mice. Pfp-deficient mice were at least 1,000-fold more susceptible to these lymphomas when transplanted, compared with immunocompetent mice in which tumor rejection was controlled by CD8(+) T lymphocytes. This study is the first that implicates direct cytotoxicity by lymphocytes in regulating lymphomagenesis.
Resumo:
Azo dyes are of environmental concern due to their degradation products, widespread use, and low-removal rate during conventional treatment. Their toxic properties are related to the nature and position of the substituents with respect to the aromatic rings and amino nitrogen atom. The dyes Disperse Red 1 and Disperse Red 13 were tested for Salmonella mutagenicity, cell viability by annexin V, and propidium iodide in HepG2 and by aquatic toxicity assays using daphnids. Both dyes tested positive in the Salmonella assay, and the suggestion was made that these compounds induce mainly frame-shift mutations and that the enzymes nitroreductase and O-acetyltransferase play an important role in the observed effect. In addition, it was shown that the presence of the chlorine substituent in Disperse Red 13 decreased the mutagenicity about 14 times when compared with Disperse Red 1, which shows the same structure as Disperse Red 13, but without the chlorine substituent. The presence of this substituent did not cause cytotoxicity in HepG2 cells, but toxicity to the water flea Daphnia similis increased in the presence of the chlorine substituent. These data suggest that the insertion of a chlorine substituent could be an alternative in the design of dyes with low-mutagenic potency, although the ecotoxicity should be carefully evaluated. (C) 2010 Wiley Periodicals, Inc. Environ Toxicol 26: 489-497, 2011.
Resumo:
Natural killer (NK) cells are innate effector lymphocytes necessary for defence against stressed, microbe-infected, or malignant cells. NK cells kill target cells by either of two major mechanisms that require direct contact between NK cells and target cells. In the first pathway, cytoplasmic granule toxins, predominantly a membrane-disrupting protein known as perforin, and a family of structurally related serine C, proteases (granzymes) with various substrate specificities, are secreted by exocytosis and together induce apoptosis of the target cell. The granule-exocytosis pathway potently activates cell-death mechanisms that operate through the activation of apoptotic cysteine proteases (caspases), but can also cause cell death in the absence of activated caspases. The second pathway involves the engagement of death receptors (e.g. Fas/CD95) on target cells by their cognate ligands (e.g. FasL on NK cells, resulting in classical caspase-dependent apoptosis. The comparative role of these pathways in the pathophysiology of many diseases is being dissected by analyses of gene-targeted mice that lack these molecules, and humans who have genetic mutations affecting these pathways. We are also now learning that the effector function of NK cells is controlled by interactions involving specific NK cell receptors and their cognate ligands, either on target cells, or other cells of the immune system. This review will discuss the functional importance of NK cell cytotoxicity and the receptor/ligand interactions that control these processes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Bovine pericardium, for cardiac valve fabrication, was coated with either chitosan or silk fibroin film. In vitro calcification tests of coated and non coated bovine pericardium were performed in simulated body fluid solution in order to investigate potential alternatives to minimize calcification on implanted heart valves. Complementary, morphology was assessed by scanning electron microscopy - SEM; X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) were performed for structural characterization of coatings and biocompatibility of chitosan. Silk fibroin films were assayed by in vitro cytotoxicity and endothelial cell growth tests. Bovine pericardium coated with silk fibroin or chitosan did not present calcification during in vitro calcification tests, indicating that these biopolymeric coatings do not induce bovine pericardium calcification. Chitosan and silk fibroin films were characterized as non cytotoxic and silk fibroin films presented high affinity to endothelial cells. The results indicate that bovine pericardium coated with silk fibroin is a potential candidate for cardiac valve fabrication, since the affinity of silk fibroin to endothelial cells can be explored to induce the tissue endothelization and therefore, increase valve durability by increasing their mechanical resistance and protecting them against calcification. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Bovine pericardium is a widely utilized biomaterial. Usually, after harvesting, it is advantageous that the pericardium be immersed in glycerol to improve its shelf life. This can induce some degree of toxicity in the material. The studies were performed in compliance with the rules of ISO 10993 and OECD 487, in the biological evaluation of medical devices. The material was prepared without previous washing. After sterilization by gamma radiation the pericardium was immersed in RPMI 1640 culture medium to fulfill the extraction condition. The same extract was employed in the cytotoxic and genotoxic tests. The procedures were carried out with Chinese hamster ovary cell line and to determine the cytotoxicity, a colorimetric method with the tetrazolium compound MTS was used. For the genotoxicity, following the in vitro micronucleus assay, the test was developed with and without metabolic activation. The Cytotoxicity Index was graphically estimated at the extract concentration of 78%. In the genotoxicity test, the average value of cell proliferation index was found to be 1.62 +/- 0.02 with S9 metabolic activator and 1.91 +/- 0.01 without S9 metabolic activator. Both values are similar to the negative control value in the micronucleus assay. We observed that although the pericardium preserved in glycerol shows a certain level of cytotoxicity, it does not show any genotoxicity.
Resumo:
Objectives The study`s aims were to evaluate the antimycobacterial activity of 13 synthetic neolignan analogues and to perform structure activity relationship analysis (SAR). The cytotoxicity of the compound 2-phenoxy-1-phenylethanone (LS-2, 1) in mammalian cells, such as the acute toxicity in mice, was also evaluated. Methods The extra and intracellular antimycobacterial activity was evaluated on Mycobacterium tuberculosis H37Rv. Cytotoxicity studies were performed using V79 cells, J774 macrophages and rat hepatocytes. Additionally, the in-vivo acute toxicity was tested in mice. The SAR analysis was performed by Principal Component Analysis (PCA). Key findings Among the 13 analogues tested, LS-2 (1) was the most effective, showing promising antimycobacterial activity and very low cytotoxicity in V79 cells and in J774 macrophages, while no toxicity was observed in rat hepatocytes. The selectivity index (SI) of LS-2 (1) was 91 and the calculated LD50 was 1870 mg/kg, highlighting the very low toxicity in mice. SAR analysis showed that the highest electrophilicity and the lowest molar volume are physical-chemical characteristics important for the antimycobacterial activity of the LS-2 (1). Conclusions LS-2 (1) showed promising antimycobacterial activity and very weak cytotoxicity in cell culture, as well as an absence of toxicity in primary culture of hepatocytes. In the acute toxicity study there was an indication of absence of toxicity on murine models, in vivo.
Resumo:
The NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (py = pyridine) was loaded into poly-lactic-co-glycolic acid (PLGA) microparticles using the double emulsification technique. Scanning electron microscopy (SEM) and dynamic light scattering revealed that the particles are spherical in shape, have a diameter of 1600 nm, and have low tendency to aggregate. The entrapment efficiency was 25%. SEM analysis of the melanoma cell B16-F10 in the presence of the microparticles containing the complex trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (pyMP) showed that the microparticles were adhered to the cell surface after 2 h of incubation. The complex with concentrations lower than 1 x 10(-4) M did not show toxicity in B16-F 10 murine cells. The complex in solution is toxic at higher concentrations (> 1 x 10(-3) M), with cell death attributed to NO release following the reduction of the complex. pyMP is not cytotoxic due to the lower bioavailability and availability of the entrapped complex to the medium and its reducing agents. However, pyMP is phototoxic upon light irradiation. The phototoxicity strongly suggests that cell death is due to NO release from trans-[Ru(NO)(NH(3))(4)(py)](3+). This work shows that pyMP can serve as a model for a drug delivery system carrying the NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O, which can release NO locally at the tumor cell by radiation with light only. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
TP73 encodes for two proteins: full-length TAp73 and Delta Np73, which have little transcriptional activity and exert dominant-negative function towards TP53 and TAp73. We compared TATP73 and Delta NTP73 expression in acute myeloid leukaemia (AML) samples and normal CD34(+) progenitors. Both forms were more highly expressed in leukaemic cells. Amongst AML blasts, TATP73 was more expressed in AML harbouring the recurrent genetic abnormalities (RGA): PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11, whereas higher Delta NTP73 expression was detected in non-RGA cases. TP53 expression did not vary according to Delta NTP73/TATP73 expression ratio. Leukaemic cells with higher Delta NTP73/TATP73 ratios were significantly more resistant to cytarabine-induced apoptosis.
Resumo:
Zirconia (ZrO(2)) is a bioinert, strong, and tough ceramic, while titania (TiO(2)) is bioactive but has poor mechanical properties. It is expected that ZrO(2)-TiO(2) mixed ceramics incorporate the individual properties of both ceramics, so that this material would exhibit better biological properties. Thus, the objective of this study was to compare the biocompatibility properties of ZrO(2)-TiO(2) mixed ceramics. Sintered ceramics pellets, obtained from powders of TiO(2), ZrO(2), and three different ZrO(2)-TiO(2) mixed oxides were used. Roughnesses, X-ray diffraction, microstructure through SEM, hardness, and DRIFT characterizations were performed. For biocompatibility analysis cultured FMM1 fibroblasts were plated on the top of disks and counted in SEM micrographs 1 and 2 days later. Data were compared by ANOVA complemented by Tukey`s test. All samples presented high densities and similar microstructure. The H(2)O content in the mixed ceramics was more evident than in pure ceramics. The number of fibroblasts attached to the disks increased significantly independently of the experimental group. The cell growth on the top of the ZrO(2)-TiO(2) samples was similar and significantly higher than those of TiO(2) and ZrO(2) samples. Our in vitro experiments showed that the ZrO(2)-TiO(2) sintered ceramics are biocompatible allowing faster cell growth than pure oxides ceramics. The improvement of hardness is proportional to the ZrO(2) content. Thus, the ZrO(2)-TiO(2) sintered ceramics could be considered as potential implant material. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 305-311, 2010.
Resumo:
Purpose: To evaluate the cytotoxic effects of resin-based light-cured liners on culture of pulp cells. Methods: Discs measuring 4 mill in diameter and 2 mm thick were fabricated from TheraCal (TCMTA), Vitrebond (VIT), and Ultrablend Plus (UBP). These specimens were immersed in serum-free culture medium (DMEM) for 24 hours or 7 days to produce the extracts. After incubating the pulp cells for 72 hours, the extracts were applied on the cells and the cytotoxic effects were determined based on the cell metabolism (MTT), total protein expression and cell morphology (SEM). In the control group, fresh DMEM was used. Data from MTT analysis and protein expression were submitted to Kruskal-Wallis and Mann-Whitney tests at the preset level of significance of 5%. Results: When in contact with the 24-hour extract, TCMTA, VIT, and UBP decreased the cell metabolism by 31.5%, 73.5% and 71.0%, respectively. The total protein expressed by the cells in contact with VIT and UBP was lower than TCMTA and DMEM (Mann-Whitney, P< 0.05). When in contact with the 7-day extract, TCMTA, VIT, and UBP decreased the metabolic activity by 45.9%, 77.1% and 64.4%, respectively. All the liners expressed statistically lower amounts of proteins when compared to the control. A reduction in the number of cells was observed for all liners. The remaining cells from TCMTA group resembled those from the control group while for VIT and UBP the cells presented significant morphological alterations. (Ani J Dent 2009;22:137-142).
Resumo:
Histone deacetylase inhibitors show promise as chemotherapeutic agents and have been demonstrated to block proliferation in a wide range of tumor cell lines. Much of this antiproliferative effect has been ascribed to the up-regulated expression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). In this article, we report that p21 expression was up-regulated by relatively low doses of the histone deacetylase inhibitor azelaic bishydroxamic acid (ABHA) and correlated with a proliferative arrest. Higher doses of ABHA were cytotoxic. Cells that did not up-regulate p21 expression were hypersensitive to killing by ABHA and died via apoptosis, whereas up-regulation of p21 correlated with reduced sensitivity and a block in the apoptotic mechanism, and these cells seemed to die by necrosis. Using isogenic p21(+/+) and p21(-/-) cell lines and direct inhibition of caspase activity, we demonstrate that the reduced sensitivity to killing by ABHA is a consequence of inhibition of apoptosis by up-regulated p21 expression. These data indicate the enormous potential of therapeutic strategies that bypass the cytoprotective effect of p21 and act on the same molecular targets as the histone deacetylase inhibitors.
Resumo:
Background. Posttransplant lymphoproliferative disease (PTLD), driven by the presence of Epstein-Barr virus (EBV), is becoming an increasingly important clinical problem after solid organ transplantation. The use of immunosuppressive therapy leads to the inhibition of the cytotoxic T cells that normally control the EBV latently infected B cells. The prognosis for many patients with PTLD is poor, and the optimal treatment strategy is not well defined. Method. This study investigates the use of a histone deacetylase inhibitor, azelaic bishydroxamic acid (ABRA), for its ability to effectively kill EBV-transformed lymphoblastoid cell lines. Results. In vitro treatment of lymphoblastoid cell lines with ABRA showed that they were effectively killed by low doses of the drug (ID50 2-5 mug/ml) within 48 hr. As well as being effective against polyclonal B-cell lines, ABHA was also shown to be toxic to seven of eight clonal Burkitt's lymphoma cell lines, indicating that the drug may also be useful in the treatment of late-occurring clonal PTLD. In addition, ABHA treatment did not induce EBV replication or affect EBV latent gene expression. Conclusion. These studies suggest that ABHA effectively kills both polyclonal and clonal B-cell lines and has potential in the treatment of PTLD.
Resumo:
Foi desenvolvido um método destinado a fazer a triagem rápida e o escalonamento da toxicidade geral exercida por xenobióticos tendo como modelo o Saccharomyces cerevisiae. Para padronizar as condições de experimentação foi estabelecida a relação entre a absorvência a 525 nm e o número de células em suspensão por mililitro de meio de cultura e calculadas uma curva padrão e respectiva equação definidora (Y=6,8219E-08X + 0,0327) Culturas de Saccharomyces cerevisiae em meio completo para leveduras (YPD - 1% de glucose 2%, de peptona 0,5% e extracto de levedura 1%) foram expostas a diferentes concentrações de nicotina e a inibição do crescimento avaliada.
Resumo:
It has been described that fullerenes (C60) present interesting properties with potential application in clinical conditions related to oxidative stress. One of the most prominent features of fullerenes is the ability to quench free radicals. However, because of its poor solubility, this has been studied mostly in organic solutions, while the antioxidant activity and cytotoxicity of fullerenes and their derivates in aqueous medium is not well characterized. The antioxidant capacity of synthesised C60-conjugates has been investigated and its was higher comparing to C60 isolated. The aim of this study was to assess the viability of C60-conjugates by determining its antioxidant activity and cytotoxicity in bio-relevant media.
Resumo:
Four ruthenium(II) complexes with the formula [Ru(eta(5)-C(5)H(5))(PP)L][CF(3)SO(3)], being (PP = two triphenylphosphine molecules), L = 1-benzylimidazole, 1; (PP = two triphenylphosphine molecules), L = 2,2'bipyridine, 2; (PP = two triphenylphosphine molecules), L = 4-Methylpyridine, 3; (PP = 1,2-bis(diphenylphosphine) ethane), L = 4-Methylpyridine, 4, were prepared, in view to evaluate their potentialities as antitumor agents. The compounds were completely characterized by NMR spectroscopy and their crystal and molecular structures were determined by X-ray diffraction. Electrochemical studies were carried out giving for all the compounds quasi-reversible processes. The images obtained by atomic force microscopy (AFM) suggest interaction with pBR322 plasmid DNA. Measurements of the viscosity of solutions of free DNA and DNA incubated with different concentrations of the compounds confirmed this interaction. The cytotoxicity of compounds 1234 was much higher than that of cisplatin against human leukemia cancer cells (HL-60 cells). IC(50) values for all the compounds are in the range of submicromolar amounts. Apoptotic death percentage was also studied resulting similar than that of cisplatin. (C) 2010 Elsevier Inc. All rights reserved.