195 resultados para CX3CR1 phagocytes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ultrastructural and cytochemical characteristics of mononuclear phagocyte cells in turtles are not well described in the literature, especially in Phrynops hilarii. Thus, the aim of this study was to evaluate these characteristics in the mononuclear phagocyte cells and their phagocytic activity in vitro using the turtle P. hilarii as an experimental animal model. The six turtles used in the study were observed in two seasons, spring and summer. Results showed that mononuclear phagocytes incubated only in diluted solution or with colloidal charcoal have cytoplasm phagolysosomes. The cells incubated with colloidal charcoal and further exposed to the cytochemical reaction for acid P-glycerophosphatase, showed cytoplasm phagolysosomes filled by charcoal particles being digested and some positively stained lysosomes. Acid P-glycerophosphatase positive reaction was present in lysosomes and inside the phagolysosomes, while acid cytidine 5-monophosphatase staining occurred in lysosome surroundings. A positive reaction for trimetaphosphatase was also found inside phagolysosomes. In conclusion, the presence of lysosomal enzymes like trimetaphosphatase and cytidine-5'-sodium monophosphate, in the circulating blood of P. hilarii indicate that mononuclear phagocytes participate in the phagocytic process by gathering many phagocytic cells and forming multinucleated giant cells, which probably have a role in the blood clearance process. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The interaction of human monocytes or monocyte-derived macrophages and yeast-form Paracoccidioides brasiliensis was studied in vitro. Yeast cells were readily ingested by adherent monocytes or macrophages. Multiplication of P. brasiliensis, measured by growth as colony forming units (cfu) on a supplemented medium with good plating efficiency, was greater in monocyte co-cultures compared to the number of cfu obtained from complete tissue-culture medium (CTCM). Multiplication increased with time in macrophage cocultures, e.g., from two-six-fold in 24 h to nine-fold in 72 h. Microscopic observations indicated that ingested yeast cells multiplied inside macrophages. When monocytes were treated with supernate cytokines (CK) from concanavalin-A-stimulated mononuclear cells, then co-cultured with P. brasiliensis, multiplication was significantly inhibited compared with control monocyte co-cultures. Treatment of macrophages-derived from monocytes by culture in vitro for 3 days-for a further 3 days with CK resulted in maximal inhibition of multiplication over the subsequent 72 h. Similarly, when monocyte-derived macrophages (after culture for 7 days) were treated for 3 days with recombinant human gamma-interferon (IFN; 300 U/ml) or CK they restricted multiplication of P. brasiliensis by 65% and 95%, respectively, compared with control macrophages, Antibody to IFN abrogated the effect of IFN or CK treatment. These findings show that ingested P. brasiliensis can multiply in human monocytes or macrophages and that this multiplication can be restricted by activated monocytes or macrophages.
Resumo:
The localization of peroxidase activity in different cell regions is used as a criterion for classifying the stage of maturity of mammalian mononuclear phagocytes, with a positive peroxidase reaction indicating the presence of monoblasts, promonocytes, monocytes, and macrophages. Peroxidase activity was observed ultrastructurally in the circulating blood of pacu fish (Piaractus mesopotamicus), identifying monoblasts, promonocytes, monocytes, and macrophages. These observations suggest that differentiation of mononuclear phagocytes occurs in the blood circulation of fish, whereas in mammals, monoblasts and promonocytes are detected in bone marrow, with only monocytes detected in circulating blood and differentiation into macrophages occurring in other body compartments.
Resumo:
The localization of peroxidase activity in different cell regions is used as a criterion for the classification of the stage of maturation of mammalian mononuclear phagocytes with a positive peroxidase reaction indicating the presence of monoblasts, promonocytes, monocytes and macrophages. In this study it was evaluated the peroxidase activity of blood mononuclear phagocytes of this turtle detected at different stages of differentiation. The present observations suggest that, in turtles, the differentiation of mononuclear phagocytes occur in the blood circulation, in contrast to animals, where only are monocytes in circulating blood and macrophage differentiation occurs in other body compartments. © 2007 Sociedad Chilena de AnatomÃa.
Antioxidant Effect of Melatonin on the Functional Activity of Colostral Phagocytes in Diabetic Women
Resumo:
Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca2+ release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca2+ release. Phagocytes treated with TMB-8 (intracellular Ca2+ inhibitor) decreased superoxide, bactericidal activity and intracellular Ca2+ release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC and other infections. In diabetic mothers, because maternal hyperglycemia modifies the functional activity of colostrum phagocytes, melatonin effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity. © 2013 Morceli et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influences of age in calves' immune system are described in their first phase of life. We hypothesized that variations that occur in the main mechanisms of lung innate response can help to identify periods of greater susceptibility to the respiratory diseases that affect calves in the first stage of their life. This study aimed to evaluate the innate immune system. Nine healthy calves were monitored for 3 mo and 8 immunologic evaluations were performed. Bronchoalveolar lavage samples were recovered by bronchoscopy. The alveolar macrophages in samples were identified by protein expression of cluster of differentiation 14 (CD14) and underwent functional evaluation of phagocytosis (Staphylococcus aureus stained with propidium iodide and Escherichia coli). Data was assessed by one-way ANOVA (unstacked and parametric) and the Mann-Whitney test (nonparametric). Functional alterations in CD14-positive phagocytes were observed, with punctual higher intensity of phagocytosis in the third week and its decrease starting at 45 d of life. A gradual increase in phagocytosis rate was observed starting at this date. It is concluded that from 45 d of life on, alveolar macrophages have less phagocytic capacity but more cells perform this function. We suggest that this occurs because lung macrophages of calves start to maintain their immune response without passive immunity influence. Until 90 d of life, calves did not achieve the stability to conclude the maturation of local innate immune response.
Resumo:
BACKGROUND AND PURPOSE Phagocyte function is critical for host defense against infections. Defects in phagocytic function lead to several primary immunodeficiencies characterized by early onset of recurrent and severe infections. In this work, we further investigated the effects of BAY 41-2272, a soluble guanylate cyclase (sGC) agonist, on the activation of human peripheral blood monocytes (PBM) and THP-1 cells. EXPERIMENTAL APPROACH THP-1 cells and PBM viability was evaluated by methylthiazoletetrazolium assay; reactive oxygen species production by lucigenin chemiluminescence; gene and protein expression of NAPDH oxidase components by qRT-PCR and Western blot analysis, respectively; phagocytosis and microbicidal activity by co-incubation, respectively, with zymosan and Escherichia coli; and cytokine release by elisa. KEY RESULTS BAY 41-2272, compared with the untreated group, increased spreading of monocytes by at least 35%, superoxide production by at least 50%, and gp91PHOX and p67PHOX gene expression 20 to 40 times, in both PBM and THP-1 cells. BAY 41-2272 also augmented phagocytosis of zymosan particles threefold compared with control, doubled microbicidal activity against E. coli and enhanced the release of TNF-a and IL-12p70 by both PBM and THP-1 cells. Finally, by inhibiting sGC with ODQ, we showed that BAY 41-2272-induced superoxide production and phagocytosis is not dependent exclusively on sGC activation. CONCLUSIONS AND IMPLICATIONS In addition to its ability to induce vasorelaxation and its potential application for therapy of vascular diseases, BAY 41-2272 was shown to activate human mononuclear phagocytes. Hence, it is a novel pro-inflammatory drug that may be useful for controlling infections in the immunocompromised host.
Resumo:
Background: Evidence to date shows that mast cells play a critical role in immune defenses against infectious agents, but there have been no reports about involvement of these cells in eliminating periodontopathogens. In this study, the phagocytic ability of mast cells against Aggregatibacter actinomycetemcomitans compared with macrophages is evaluated. Methods: In vitro phagocytic assays were conducted using murine mast cells and macrophages, incubated with A. actinomycetemcomitans, either opsonized or not, with different bacterial load ratios. After 1 hour, cells were stained with acridine orange and assessed by confocal laser-scanning electronmicroscopy. Results: Phagocytic ability of murine mast cells against A. actinomycetemcomitans was confirmed. In addition, the percentage of mast cells with internalized bacteria was higher in the absence of opsonization than in the presence of opsonization. Both cell types showed significant phagocytic activity against A. actinomycetemcomitans. However, the percentage of mast cells with non-opsonized bacteria was higher than that of macrophages with opsonized bacteria in one of the ratios (1:10). Conclusions: This is the first report about the participation of murine mast cells as phagocytes against A. actinomycetemcomitans, mainly in the absence of opsonization with human serum. Our results may indicate that mast cells act as professional phagocytes in the pathogenesis of biofilmassociated periodontal disease
Resumo:
The pattern-recognition molecule M-ficolin is synthesized by monocytes and neutrophils. M-ficolin activates the complement system in a manner similar to mannan-binding lectin (MBL), but little is known about its role in host defense. Neonates are highly vulnerable to bacterial sepsis, in particular, due to their decreased phagocytic function.
Resumo:
Encephalitozoon cuniculi is an obligate intracellular, spore-forming parasite belonging to the microsporidia that can cause disseminated infection in immunocompromised persons. E. cuniculi spores infect host cells by germination, i.e., by explosively everting the polar filament, through which the spore contents (sporoplasms) are subsequently injected into the cytoplasm. In addition, we observed intracellular, nongerminated spores in various nonprofessional phagocytes. In MRC5 cells, the number of internalized spores was approximately 10-fold higher than the number of injected sporoplasms. Compared to the rate of uptake by human monocyte-derived macrophages, internalization rates by A549 cells, MRC5 cells, and 293 cells were 0.6, 4.4, and 22.2%, respectively. The mechanism of uptake was studied in MRC5 cells. Killed spores were internalized at the same rate as live spores, indicating that nongerminated parasites do not actively participate in cell entry. Cytochalasin D inhibited uptake of spores by 95%, demonstrating an actin-dependent process. By electron and epifluorescence microscopy, intracellular spores were found in a tightly fitting membrane-bound compartment. The vacuole containing the spores was positive for the lysosomal membrane protein LAMP-1 and colocalized with the late endosomal-lysosomal content marker rhodamine dextran. Our results show that, in addition to the unique way in which microsporidia infect cells, E. cuniculi spores enter nonprofessional phagocytes by phagocytosis and traffic into a late endosomal-lysosomal compartment.
Resumo:
A recently identified chemokine, fractalkine, is a member of the chemokine gene family, which consists principally of secreted, proinflammatory molecules. Fractalkine is distinguished structurally by the presence of a CX3C motif as well as transmembrane spanning and mucin-like domains and shows atypical constitutive expression in a number of nonhematopoietic tissues, including brain. We undertook an extensive characterization of this chemokine and its receptor CX3CR1 in the brain to gain insights into use of chemokine-dependent systems in the central nervous system. Expression of fractalkine in rat brain was found to be widespread and localized principally to neurons. Recombinant rat CX3CR1, as expressed in Chinese hamster ovary cells, specifically bound fractalkine and signaled in the presence of either membrane-anchored or soluble forms of fractalkine protein. Fractalkine stimulated chemotaxis and elevated intracellular calcium levels of microglia; these responses were blocked by anti-CX3CR1 antibodies. After facial motor nerve axotomy, dramatic changes in the levels of CX3CR1 and fractalkine in the facial nucleus were evident. These included increases in the number and perineuronal location of CX3CR1-expressing microglia, decreased levels of motor neuron-expressed fractalkine mRNA, and an alteration in the forms of fractalkine protein expressed. These data describe mechanisms of cellular communication between neurons and microglia, involving fractalkine and CX3CR1, which occur in both normal and pathological states of the central nervous system.