20 resultados para CTENIDAE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cladistic analysis using parsimony under equal weights is applied to test the phylogenetic relationships of Itatiaya Mello-Leitao, previously described in Ctenidae. The data matrix comprised 25 taxa scored for a total of 47 characters. The cladistic analysis yielded two equally parsimonious trees of 124 steps. The consensus of the two most parsimonious trees is used to discuss the phylogenetic relationships and justify taxonomic modifications. The results indicate that this genus is a representative of Zoropsidae, which is newly recorded from the Neotropical region. The monophyly of Itatiaya is supported by three non-ambiguous synapomorphies and three homoplastic synapomorphies. A new diagnosis is provided for Itatiaya. Itatiaya pucupucu is placed as sister species to the remaining species of the genus. A polytomic clade composed of Itatiaya modesta, Itatiaya iuba, Itatiaya apipema and the clade formed by Itatiaya tacamby + Itatiaya pykyyra is supported by the presence of modified cylindrical gland spigots. Additionally, the male of I. pykyyra Polotow & Brescovit is described for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two events of predation of herps by spiders in the Brazilian Cerrado are reported here. A lizard Micrablepharus atticolus (Sauria: Gymnophthalmidae) was found being preyed upon by Lycosa erythrognatha (Araneae: Lycosidae) and a frog Physalaemus cuvieri (Anura: Leiuperidae) was seen being preyed upon by Ancylometes sp. (Araneae: Ctenidae).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Estação Científica Ferreira Penna (ECFP), com aproximadamente 33.000 hectares, está localizada na Floresta Nacional de Caxiuanã, Pará. Com o objetivo de implementar um protocolo estruturado de inventario da fauna de aranhas de serapilheira da ECFP, foi obtido um total de 400 amostras concentradas de 1m² de serapilheira, nos períodos chuvoso e seco. As aranhas foram segregadas através da combinação das técnicas de triagem manual e de extratores de Winkler. Estas amostras foram provenientes de cinco parcelas. Três parcelas estão localizadas em mata de terra firme (LBA-EXP, LBA-CON e TF-IMC) e duas em mata de igapó (1G-N e IG-S). Uma das parcelas de terra firme sofre estresse hídrico (LBA-EXP), sendo a chuva excluída do solo por meio de painéis e calhas. Foram coletados 2230 indivíduos (5,6 indivíduos / m², em média), pertencentes a 34 famílias. Sete famílias foram representadas apenas por animais imaturos: Nesticidae, Pisauridae, Gnaphosidae, Mimetidae, Deinopidae, Oxiopidae, Uloboridae. As famílias mais abundantes foram Salticidae, Theridiidae, Ctenidae, Oonopidae e Linyphiidae. Foi obtido um total de 876 indivíduos adultos, atribuídos a 120 espécies ou morfo-espécies, em 27 famílias. As espécies com maior abundância relativa foram Styposis sp.3 (Theridiidae) com 16,55% do total de indivíduos adultos, Pseudanapis sp.1 (Anapidae) com 6,96%, Meioneta sp.1 (Linyphiidae) com 6,39%, Oonopidae sp.1 com 5,59% e Salticidae sp.1 com 4,56%. Para a maioria das análises, foram excluídas 15 espécies consideradas como ocasionais na serapilheira. As curvas de acumulação de espécies observadas para o total de amostras e para cada uma das parcelas não atingiram assíntotas ao final da adição de amostras. Os padrões de abundância e incidência destas espécies indicam a existência de uma riqueza real de 123 a 184 espécies. As maiores estimativas de riqueza em espécies foram encontradas na parcela LBA-EXP (75 - 110 espécies). As menores estimativas foram observadas em IG-N (25 - 59 espécies). Apesar da riqueza em espécies e a abundância de aranhas ter sido maior na parcela LBA-EXP, a diversidade foi maior nas parcelas LBA-CON e TF-IMC. A diversidade no igapó foi mais baixa do que na terra firme. A composição de espécies diferiu entre os ambientes de terra firme e igapó, de acordo com coeficientes de similaridade e complementaridade percentual. A abundância e a riqueza de espécies de aranhas de serapilheira aumentam no período seco e diminuem com o aumento da umidade residual do solo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spitting spiders (Scytodidae) have a distinct predatory strategy in which they eject a sticky secretion from their cheliceral fangs to immobilize prey. This behavior could potentially allow the spider not only to avoid defensive secretions but also to bite specific vulnerable spots of a potential prey such as a harvestman. We used an ethogram, a fluxogram and an experiment to analyze the interaction between the harvestman Discocyrtus invalidus Piza 1938 (Arachnida: Opiliones) and the syntopic spider Scytodes globula (Nicolet 1849) (Arachnida: Araneae). These spiders, while readily taking crickets as prey, seldom spat at and never bit the harvestmen, which apparently did not exude repugnatorial secretions. We therefore tested, by clogging the glands and using appropriate controls, whether non-visible amounts of secretions could cause the rejection, but the harvestmen were still refused. This is the first detailed and quantified description of an interaction between a spitting spider and a harvestman. The general conclusions are that S. globula avoids preying on D. invalidus, S. globula behaves differently when attacking harvestmen and crickets and the scent gland secretions of D. invalidus do not play a direct role in this predator-prey interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review on all spider venom components known by the end of 2010 bases on 1618 records for venom compounds from 174 spider species (= 0.41% of all known species) belonging to 32 families (= 29% of all existing spider families). Spiders investigated for venom research are either big (many mygalomorph species, Nephilidae, Ctenidae and Sparassidae) or medically important for humans (e.g. Loxosceles or Latrodectus species). Venom research widely ignored so far the two most species-rich families (Salticidae and Linyphiidae) and strongly neglected several other very abundant families (Araneidae, Lycosidae, Theridiidae, Thomisidae and Gnaphosidae). We grouped the known 1618 records for venom compounds into six categories: low molecular mass compounds (16 % of all compounds), acylpolyamines (11 %), linear peptides (6 %), cysteine-knotted mini-proteins (60 %), neurotoxic proteins (1 %) and enzymes (6 %). Low molecular mass compounds are known from many spider families and contain organic acids, nucleosides, nucleotides, amino acids, amines, polyamines, and some further substances, many of them acting as neurotransmitters. Acylpolyamines contain amino acids (Araneidae and Nephilidae) or not (several other families) and show a very high diversity within one species. Linear peptides, also called cytolytic, membranolytic or antimicrobial, exert a highly specific structure and are so far only known from Ctenidae, Lycosidae, Oxyopidae and Zodariidae. Cysteine-knotted mini-proteins represent the majority of venom compounds because research so far focused on them. They probably occur in most but not all spider families. Neurotoxic proteins so far are only known from theridiid spiders. Enzymes had been neglected for some time but meanwhile it becomes obvious that they play an important role in spider venoms. Sixteen enzymes either cleave polymers in the extracellular matrix or target phospholipids and related compounds in membranes. The overall structure of these compounds is given and the function, as far as it is known, is described. Since several of these component groups are presented in one average spider venom, we discuss the known interactions and synergisms and give reasons for such a functional redundancy. We also discuss main evolutionary pathways for spider venom compounds such as high variability among components of one group, synergistic interactions between cysteine-knotted mini-proteins and other components (low molecular mass compounds and linear peptides), change of function from ion-channel acting mini-proteins to cytolytic effects and replacement of mini-proteins by linear peptides, acylpolyamines, large proteins or enzymes. We also add first phylogenetic considerations.