770 resultados para CRAB CALLINECTES-SAPIDUS
Resumo:
The reproductive biology of a species includes factors beyond its sexual maturity, fecundity and reproductive period, and may extend to the differential distribution of individuals. The reproductive dynamics of the blue crab Callinectes ornatus was investigated through monthly collections over the course of 2 years in three bays on the southeastern coast of Brazil. For each bay, six transects were established, four of them parallel to the beach line (at depths of 5, 10, 15, and 20 m), one transect exposed to wave action, and another sheltered from waves. Females and males were classified according to the gonadal maturation stage, and were grouped as individuals with reproductive potential (mature gonads or breeding females) or not (rudimentary gonads or in development). Analyses using ordination techniques (PCA) and gradient analysis (CCA) showed that 82.13 % of environmental variations were explained by the transect arrangement, and these characteristics explained 86.70 % of the differential distribution of female crabs and 96.57 % of the distribution of males. These results indicate that females with reproductive potential were more abundant in deeper regions, while females with rudimentary or developed gonads were abundant in shallower habitats and areas sheltered from wave action. Thus, the distribution of C. ornatus in these bays was linked to their reproductive state, as part of the reproductive strategy of the population. © 2013 Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Não disponível
Resumo:
Diadromous freshwater shrimps are exposed to brackish water both as an obligatory part of their larval life cycle and during adult reproductive migration; their well-developed osmoregulatory ability is crucial to survival in such habitats. This study examines gill microsomal Na,K-ATPase (K-phosphatase activity) kinetics and protein profiles in the freshwater shrimp Macrobrachium amazonicum when in fresh water and after 10-days of acclimation to brackish water (21 parts per thousand salinity), as well as potential routes of Na(+) uptake across the gill epithelium in fresh water. On acclimation, K-phosphatase activity decreases 2.5-fold, Na,K-ATPase alpha-subunit expression declines, total protein expression pattern is markedly altered, and enzyme activity becomes redistributed into different density membrane fractions, possibly reflecting altered vesicle trafficking between the plasma membrane and intracellular compartments. Ultrastructural analysis reveals an intimately coupled pillar cell-septal cell architecture and shows that the cell membrane interfaces between the external medium and the hemolymph are greatly augmented by apical pillar cell evaginations and septal cell inviginations, respectively. These findings ire discussed regarding the putative movement of Na(+) across the pillar cell interfaces and into the hemolymph via the septal cells, powered by the Na,K-ATPase located in their invaginations. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We evaluate osmotic and chloride (Cl(-)) regulatory capability in the diadromous shrimp Macrobrachium amazonicum, and the accompanying alterations in hemolymph osmolality and [Cl(-)], gill Na(+)/K(+)-ATPase activity, and expression of gill Na(+)/K(+)-ATPase alpha-subunit and V-ATPase B subunit mRNA during salinity (S) acclimation. We also characterize V-ATPase kinetics and the organization of transport-related membrane systems in the gill epithelium. Macrobrachium amazonicum strongly hyper-regulates hemolymph osmolality and [Cl(-)] in freshwater and in salinities up to 25 parts per thousand S. During a 10-day acclimation period to 25 parts per thousand S, hemolymph became isosmotic and hypo-chloremic after 5 days, [Cl(-)] alone remaining hyporegulated thereafter. Gill Na(+)/K(+)-ATPase alpha-subunit mRNA expression increased 6.5 times initial values after 1 h, then decreased to 3 to 4 times initial values by 24 h and to 1.5 times initial values after 10 days at 25 parts per thousand S. This increased expression was accompanied by a sharp decrease at 5 h then recovery of initial Na(+)/K(+)-ATPase activity within 24 h, declining again after 5 days, which suggests transient Cl(-) secretion. V-ATPase B-subunit mRNA expression increased 1.5-fold within 1 h, then reduced sharply to 0.3 times initial values by 5 h, and remained unchanged for the remainder of the 10-day period. V-ATPase activity dropped sharply and was negligible after a 10-day acclimation period to 21 parts per thousand S, revealing a marked downregulation of ion uptake mechanisms. The gill epithelium consists of thick, apical pillar cell flanges, the perikarya of which are coupled to an intralamellar septum. These two cell types respectively exhibit extensive apical evaginations and deep membrane invaginations, both of which are associated with numerous mitochondria, characterizing an ion transporting epithelium. These changes in Na(+)/K(+)- and V-ATPase activities and in mRNA expression during salinity acclimation appear to underpin ion uptake and Cl(-) secretion by the palaemonid shrimp gill.
Resumo:
This study evaluated the bioaccumulation of tributyltin (TBT) by the blue crab (Callinectes sapidus). Animals were fed with contaminated food containing 30 µg g-1 of TBT expressed as Sn. The analytes were determined in the gills, hepatopancreas and muscle. Acid digestion was used in the total Sn determination, and a solid-phase extraction technique was used for the selective determination of TBT. Limits of detection of 44.6 and 4.46 ng g-1 were found for HG-ICP OES (hydride generation-inductively coupled plasma optical emission spectroscopy) and ICP-MS (ICP-mass spectrometry), respectively. The results for non-contaminated animals were below 50 ng g-1, while the animals subjected to the contaminated food showed higher tissue concentrations of Sn (until 6229 ng g-1) and TBT (until 3357 ng g-1) related to the number of exposure days. According to the results, Sn is bioaccumulated by the blue crab in higher concentrations in the hepatopancreas. For most of these animals, the results suggest that Sn is bioaccumulated as TBT.
Resumo:
Crustacean color change results partly from granule aggregation induced by red pigment concentrating hormone (RPCH). In shrimp chromatophores, both the cyclic GMP (3', 5'-guanosine monophosphate) and Ca2+ cascades mediate pigment aggregation. However, the signaling elements upstream and downstream from cGMP synthesis by GC-S (cytosolic guanylyl cyclase) remain obscure. We investigate post-RPCH binding events in perfused red ovarian chromatophores to disclose the steps modulating cGMP concentration, which regulates granule translocation. The inhibition of calcium/calmodulin complex (Ca2+/CaM) by N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W7) induces spontaneous aggregation but inhibits RPCH-triggered aggregation, suggesting a role in pigment aggregation and dispersion. Nitric oxide synthase inhibition by N omega-nitro-L-arginine methyl ester hydrochloride (L-NAME) strongly diminishes RPCH-induced aggregation; protein kinase G inhibition (by rp-cGMPs-triethylamine) reduces RPCH-triggered aggregation and provokes spontaneous dispersion, disclosing NO/PKG participation in aggregation signaling. Myosin light chain phosphatase inhibition (by cantharidin) accelerates RPCH-triggered aggregation, whereas Rho-associated protein kinase inhibition (by Y-27632, H-11522) reduces RPCH-induced aggregation and accelerates dispersion. MLCP (myosin light chain kinase) and ROCK (Rho-associated protein kinase) may antagonistically regulate myosin light chain (MLC) dephosphorylation/phosphorylation during pigment dispersion/aggregation. We propose the following general hypothesis for the cGMP/Ca2+ cascades that regulate pigment aggregation in crustacean chromatophores: RPCH binding increases Ca2+ (int), activating the Ca2+/CaM complex, releasing NOS-produced nitric oxide, and causing GC-S to synthesize cGMP that activates PKG, which phosphorylates an MLC activation site. Myosin motor activity is initiated by phosphorylation of an MLC regulatory site by ROCK activity and terminated by MLCP-mediated dephosphorylation. Qualitative comparison reveals that this signaling pathway is conserved in vertebrate and invertebrate chromatophores alike.
Resumo:
Stomach contents analysis (SCA) provides a snap-shot observation of a consumer's diet. Interpretation of SCA data can be complicated by many factors, including variation in gastric residence times and digestion rates among prey taxa. Although some SCA methods are reported to efficiently remove all stomach contents, the effectiveness of these techniques has rarely been tested for large irregular shaped prey with hard exoskeletons. We used a controlled feeding trial to estimate gastric residency time and decomposition rate of a large crustacean prey item, the Blue Crab (Callinectes sapidus), which is consumed by American Alligators (Alligator mississippiensis), an abundant apex predator in coastal habitats of the southeastern United States. The decomposition rate of C. sapidus in the stomachs of A. mississippiensis followed a predictable pattern, and some crab pieces remained in stomachs for at least 14 days. We also found that certain portions of C. sapidus were prone to becoming caught within the stomach or esophagus, meaning not all crab parts are consistently recovered using gastric lavage techniques. However, because the state of decomposition of crabs was predictable, it is possible to estimate time since consumption for crabs recovered from wild alligators. This information, coupled with a detailed understanding of crab distributions and alligator movement tactics could help elucidate patterns of cross-ecosystem foraging by the American Alligator in coastal habitats.
Resumo:
Post-settlement processes are a major focus in the study of the dynamics of marine populations and communities. Post-settlement movement of juveniles is an important, but often ignored, process which affects local predator-prey and competitive interactions. We used benthic suction sampling and pitfall traps to examine density and locomotory activity of Carcinus maenas juveniles in different intertidal habitat types in the Rio Mira Estuary, Portugal, to better understand intra-specific interactions in a system where density-dependent processes are known to regulate population dynamics. As expected, significantly higher densities of juvenile shore crabs were found from bare mud compared to densely vegetated habitats. At the time of sampling, small and intermediate stages together outnumbered by far the larger juveniles. Conversely, larger crabs were much more frequent than smaller ones in traps. A locomotory index (LI), i.e. the ratio between crab catch in pitfall traps and their density within their moving range, is proposed as a measure of movement. LI analyses indicated that: (1) movement is an order of magnitude higher in large than small juveniles and much higher in sparse than dense vegetation cover; (2) activity of small juveniles is mostly crepuscular, regardless of vegetation cover; and (3) movement of large juveniles is very limited in dense Zostera patches, but very high in sparsely vegetated areas, during the day and night. These results suggest that small juveniles are relatively protected under dense vegetation cover due to lower mobility of larger crabs, and provide evidence of temporal segregation of activity windows between juvenile crabs of different sizes, which may be a key mechanism to reduce cannibalism and therefore increase the carrying capacity of nursery habitats. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+), K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (approximate to 14 mu m(2) membrane per mu m(3) cytoplasm), deep invaginations that house the Na(+), K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5 mu m(2) mu m(-2)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6 mu m(2) mu m(-2)), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+), K(+)-ATPase specific activity resembles marine crabs but is approximate to 5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two alpha-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4)(+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water. J. Exp. Zool. 313A:508-523, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
This investigation discloses the recognition of an FXYD2 protein in a microsomal Na,K-ATPase preparation from the posterior gills of the blue crab, Callinectes danae, by a mammalian (rabbit) FXYD2 peptide specific antibody (gamma C-33) and MALDI-TOF-TOF mass spectrometry techniques. This is the first demonstration of an invertebrate FXYD2 protein. The addition of exogenous pig FXYD2 peptide to the crab gill microsomal fraction stimulated Na,K-ATPase activity in a dose-dependent manner. Exogenous pig FXYD2 also considerably increased enzyme affinity for K+, ATP and N-4(+)center dot K-0.5 for Na+ was unaffected. Exogenous pig FXYD2 increased the V-max for stimulation of gill Na,K-ATPase activity by Na+, K+ and ATP, by 30% to 40%. The crab gill FXYD2 is phosphorylated by PKA, suggesting a regulatory function similar to that known for the mammalian enzyme. The PKA-phosphorylated pig FXYD2 peptide stimulated the crab gill Na,K-ATPase activity by 80%, about 2-fold greater than did the non-phosphorylated peptide. Stimulation by the PKC-phosphorylated pig FXYD2 peptide was minimal. These findings confirm the presence of an FXYD2 peptide in the crab gill Na, K-ATPase and demonstrate that this peptide plays an important role in regulating enzyme activity. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Supply of competent larvae to the benthic habitat is a major determinant of population dynamics in coastal and estuarine invertebrates with an indirect life cycle. Larval delivery may depend not only on physical transport mechanisms, but also on larval behavior and physiological progress to the competent stage. Yet, the combined analysis of such factors has seldom been attempted. We used time-series analyses to examine tide- and wind-driven mechanisms responsible for the supply of crab megalopae to an estuarine river under a major marine influence in SW Spain, and monitored the vertical distribution of upstream moving megalopae, their net flux and competent state. The species Panopeus africanus (estuarine), Brachynotus sexdentatus (euryhaline) and Nepinnotheres pinnotheres (coastal) comprised 80% of the whole sample, and responded in a similar way to tide and wind forcing. Tidal range was positively correlated to supply, with maxima 0 to 1 d after spring tides, suggesting selective tidal stream transport. Despite being extensively subjected to upwelling, downwind drift under the effect of westerlies, not Ekman transport, explained residual supply variation at our sampling area. Once in the estuary, net flux and competence state matched the expected trends. Net upstream flux increased from B. sexdentatus to P. africanus, favoring transport to a sheltered coastal habitat (N. pinnotheres), or to the upper estuary (P. africanus). Competence state was highest in N. pinnotheres, intermediate in B. sexdentatus and lowest in P. africanus, as expected if larvae respond to cues from adequate benthic habitat. P. africanus megalopae were found close to the bottom, not above, rendering slower upstream transport than anticipated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Population structure and reproductive season of the portunid crab Callinectes ornatus were studied in animals collected from the Ubatuba bays, Sao Paulo, Brazil (23°20' to 23°35' S and 44°50' to 45°14' W). The samples were taken in three trawls performed every other month from January 1991 to May 1993. A total of 3,829 specimens of C. ornatus were obtained. Their size ranged from 9.3 to 84.6 mm (carapace width). Their median size based on their cephalothoracic width and their size frequency were determined as well. Their reproduction was continuous, with variable proportions of ovigerous females. The highest incidence of ovigerous females occurred in January 1991, 1992 and 1993 and March and November 1992. The oscillations of the environmental factors between the seasons are not so intense in subtropical regions, therefore allowing the continuity of the physiological process of growth and reproduction throughout the year.