67 resultados para CPLEX
Resumo:
De nombreux problèmes en transport et en logistique peuvent être formulés comme des modèles de conception de réseau. Ils requièrent généralement de transporter des produits, des passagers ou encore des données dans un réseau afin de satisfaire une certaine demande tout en minimisant les coûts. Dans ce mémoire, nous nous intéressons au problème de conception de réseau avec coûts fixes et capacités. Ce problème consiste à ouvrir un sous-ensemble des liens dans un réseau afin de satisfaire la demande, tout en respectant les contraintes de capacités sur les liens. L'objectif est de minimiser les coûts fixes associés à l'ouverture des liens et les coûts de transport des produits. Nous présentons une méthode exacte pour résoudre ce problème basée sur des techniques utilisées en programmation linéaire en nombres entiers. Notre méthode est une variante de l'algorithme de branch-and-bound, appelée branch-and-price-and-cut, dans laquelle nous exploitons à la fois la génération de colonnes et de coupes pour la résolution d'instances de grande taille, en particulier, celles ayant un grand nombre de produits. En nous comparant à CPLEX, actuellement l'un des meilleurs logiciels d'optimisation mathématique, notre méthode est compétitive sur les instances de taille moyenne et supérieure sur les instances de grande taille ayant un grand nombre de produits, et ce, même si elle n'utilise qu'un seul type d'inégalités valides.
Resumo:
Les techniques de groupement technologique sont aujourd’hui utilisées dans de nombreux ateliers de fabrication; elles consistent à décomposer les systèmes industriels en sous-systèmes ou cellules constitués de pièces et de machines. Trouver le groupement technologique le plus efficace est formulé en recherche opérationnelle comme un problème de formation de cellules. La résolution de ce problème permet de tirer plusieurs avantages tels que la réduction des stocks et la simplification de la programmation. Plusieurs critères peuvent être définis au niveau des contraintes du problème tel que le flot intercellulaire,l’équilibrage de charges intracellulaires, les coûts de sous-traitance, les coûts de duplication des machines, etc. Le problème de formation de cellules est un problème d'optimisation NP-difficile. Par conséquent les méthodes exactes ne peuvent être utilisées pour résoudre des problèmes de grande dimension dans un délai raisonnable. Par contre des méthodes heuristiques peuvent générer des solutions de qualité inférieure, mais dans un temps d’exécution raisonnable. Dans ce mémoire, nous considérons ce problème dans un contexte bi-objectif spécifié en termes d’un facteur d’autonomie et de l’équilibre de charge entre les cellules. Nous présentons trois types de méthodes métaheuristiques pour sa résolution et nous comparons numériquement ces métaheuristiques. De plus, pour des problèmes de petite dimension qui peuvent être résolus de façon exacte avec CPLEX, nous vérifions que ces métaheuristiques génèrent des solutions optimales.
Resumo:
Les problèmes de conception de réseaux ont reçu un intérêt particulier et ont été largement étudiés de par leurs nombreuses applications dans différents domaines, tels que les transports et les télécommunications. Nous nous intéressons dans ce mémoire au problème de conception de réseaux avec coûts d’ajout de capacité. Il s’agit d’installer un ensemble d’équipements sur un réseau en vue de satisfaire la demande, tout en respectant les contraintes de capacité, chaque arc pouvant admettre plusieurs équipements. L’objectif est de minimiser les coûts variables de transport des produits et les coûts fixes d’installation ou d’augmentation de capacité des équipements. La méthode que nous envisageons pour résoudre ce problème est basée sur les techniques utilisées en programmation linéaire en nombres entiers, notamment celles de génération de colonnes et de coupes. Ces méthodes sont introduites dans un algorithme général de branch-and-bound basé sur la relaxation linéaire. Nous avons testé notre méthode sur quatre groupes d’instances de tailles différentes, et nous l’avons comparée à CPLEX, qui constitue un des meilleurs solveurs permettant de résoudre des problèmes d’optimisation, ainsi qu’à une méthode existante dans la littérature combinant des méthodes exactes et heuristiques. Notre méthode a été plus performante que ces deux méthodes, notamment pour les instances de très grandes tailles.
Resumo:
Le problème de conception de réseaux est un problème qui a été beaucoup étudié dans le domaine de la recherche opérationnelle pour ses caractéristiques, et ses applications dans des nombreux domaines tels que le transport, les communications, et la logistique. Nous nous intéressons en particulier dans ce mémoire à résoudre le problème de conception de réseaux avec coûts fixes et sans capacité, en satisfaisant les demandes de tous les produits tout en minimisant la somme des coûts de transport de ces produits et des coûts fixes de conception du réseau. Ce problème se modélise généralement sous la forme d’un programme linéaire en nombres entiers incluant des variables continues. Pour le résoudre, nous avons appliqué la méthode exacte de Branch-and-Bound basée sur une relaxation linéaire du problème avec un critère d’arrêt, tout en exploitant les méthodes de génération de colonnes et de génération de coupes. Nous avons testé la méthode de Branch-and-Price-and-Cut sur 156 instances divisées en cinq groupes de différentes tailles, et nous l’avons comparée à Cplex, l’un des meilleurs solveurs d’optimisation mathématique, ainsi qu’à la méthode de Branch-and- Cut. Notre méthode est compétitive et plus performante sur les instances de grande taille ayant un grand nombre de produits.
Resumo:
In dieser Arbeit wurde ein gemischt-ganzzahliges lineares Einsatzoptimierungsmodell für Kraftwerke und Speicher aufgebaut und für die Untersuchung der Energieversorgung Deutschlands im Jahre 2050 gemäß den Leitstudie-Szenarien 2050 A und 2050 C ([Nitsch und Andere, 2012]) verwendet, in denen erneuerbare Energien einen Anteil von über 85 % an der Stromerzeugung haben und die Wind- und Solarenergie starke Schwankungen der durch steuerbare Kraftwerke und Speicher zu deckenden residualen Stromnachfrage (Residuallast) verursachen. In Szenario 2050 A sind 67 TWh Wasserstoff, die elektrolytisch aus erneuerbarem Strom zu erzeugen sind, für den Verkehr vorgesehen. In Szenario 2050 C ist kein Wasserstoff für den Verkehr vorgesehen und die effizientere Elektromobilität hat einen Anteil von 100% am Individualverkehr. Daher wird weniger erneuerbarer Strom zur Erreichung desselben erneuerbaren Anteils im Verkehrssektor benötigt. Da desweiteren Elektrofahrzeuge Lastmanagementpotentiale bieten, weisen die Residuallasten der Szenarien eine unterschiedliche zeitliche Charakteristik und Jahressumme auf. Der Schwerpunkt der Betrachtung lag auf der Ermittlung der Auslastung und Fahrweise des in den Szenarien unterstellten ’Kraftwerks’-parks bestehend aus Kraftwerken zur reinen Stromerzeugung, Kraft-Wärme-Kopplungskraftwerken, die mit Wärmespeichern, elektrischen Heizstäben und Gas-Backupkesseln ausgestattet sind, Stromspeichern und Wärmepumpen, die durch Wärmespeicher zum Lastmanagment eingesetzt werden können. Der Fahrplan dieser Komponenten wurde auf minimale variable Gesamtkosten der Strom- und Wärmeerzeugung über einen Planungshorizont von jeweils vier Tagen hin optimiert. Das Optimierungsproblem wurde mit dem linearen Branch-and-Cut-Solver der software CPLEX gelöst. Mittels sogenannter rollierender Planung wurde durch Zusammensetzen der Planungsergebnisse für überlappende Planungsperioden der Kraftwerks- und Speichereinsatz für die kompletten Szenariojahre erhalten. Es wurde gezeigt, dass der KWK-Anteil an der Wärmelastdeckung gering ist. Dies wurde begründet durch die zeitliche Struktur der Stromresiduallast, die wärmeseitige Dimensionierung der Anlagen und die Tatsache, dass nur eine kurzfristige Speicherung von Wärme vorgesehen war. Die wärmeseitige Dimensionierung der KWK stellte eine Begrenzung des Deckungsanteils dar, da im Winter bei hoher Stromresiduallast nur wenig freie Leistung zur Beladung der Speicher zur Verfügung stand. In den Berechnungen für das Szenario 2050 A und C lag der mittlere Deckungsanteil der KWK an der Wärmenachfrage von ca. 100 TWh_th bei 40 bzw. 60 %, obwohl die Auslegung der KWK einen theoretischen Anteil von über 97 % an der Wärmelastdeckung erlaubt hätte, gäbe es die Beschränkungen durch die Stromseite nicht. Desweiteren wurde die CO2-Vermeidungswirkung der KWK-Wärmespeicher und des Lastmanagements mit Wärmepumpen untersucht. In Szenario 2050 A ergab sich keine signifikante CO2-Vermeidungswirkung der KWK-Wärmespeicher, in Szenario 2050 C hingegen ergab sich eine geringe aber signifikante CO2-Einsparung in Höhe von 1,6 % der Gesamtemissionen der Stromerzeugung und KWK-gebundenen Wärmeversorgung. Das Lastmanagement mit Wärmepumpen vermied Emissionen von 110 Tausend Tonnen CO2 (0,4 % der Gesamtemissionen) in Szenario A und 213 Tausend Tonnen in Szenario C (0,8 % der Gesamtemissionen). Es wurden darüber hinaus Betrachtungen zur Konkurrenz zwischen solarthermischer Nahwärme und KWK bei Einspeisung in dieselben Wärmenetze vorgenommen. Eine weitere Einschränkung der KWK-Erzeugung durch den Einspeisevorrang der Solarthermie wurde festgestellt. Ferner wurde eine untere Grenze von 6,5 bzw. 8,8 TWh_th für die in den Szenarien mindestens benötigte Wasserstoff-Speicherkapazität ermittelt. Die Ergebnisse dieser Arbeit legen nahe, das technisch-ökonomische Potential von Langzeitwärmespeichern für eine bessere Integration von KWK ins System zu ermitteln bzw. generell nach geeigneteren Wärmesektorszenarien zu suchen, da deutlich wurde, dass für die öffentliche Wärmeversorgung die KWK in Kombination mit Kurzzeitwärmespeicherung, Gaskesseln und elektrischen Heizern keine sehr effektive CO2 -Reduktion in den Szenarien erreicht. Es sollte dabei z.B. untersucht werden, ob ein multivalentes System aus KWK, Wärmespeichern und Wärmepumpen eine ökonomisch darstellbare Alternative sein könnte und im Anschluss eine Betrachtung der optimalen Anteile von KWK, Wärmepumpen und Solarthermie im Wärmemarkt vorgenommen werden.
Resumo:
Bloom filters are a data structure for storing data in a compressed form. They offer excellent space and time efficiency at the cost of some loss of accuracy (so-called lossy compression). This work presents a yes-no Bloom filter, which as a data structure consisting of two parts: the yes-filter which is a standard Bloom filter and the no-filter which is another Bloom filter whose purpose is to represent those objects that were recognised incorrectly by the yes-filter (that is, to recognise the false positives of the yes-filter). By querying the no-filter after an object has been recognised by the yes-filter, we get a chance of rejecting it, which improves the accuracy of data recognition in comparison with the standard Bloom filter of the same total length. A further increase in accuracy is possible if one chooses objects to include in the no-filter so that the no-filter recognises as many as possible false positives but no true positives, thus producing the most accurate yes-no Bloom filter among all yes-no Bloom filters. This paper studies how optimization techniques can be used to maximize the number of false positives recognised by the no-filter, with the constraint being that it should recognise no true positives. To achieve this aim, an Integer Linear Program (ILP) is proposed for the optimal selection of false positives. In practice the problem size is normally large leading to intractable optimal solution. Considering the similarity of the ILP with the Multidimensional Knapsack Problem, an Approximate Dynamic Programming (ADP) model is developed making use of a reduced ILP for the value function approximation. Numerical results show the ADP model works best comparing with a number of heuristics as well as the CPLEX built-in solver (B&B), and this is what can be recommended for use in yes-no Bloom filters. In a wider context of the study of lossy compression algorithms, our researchis an example showing how the arsenal of optimization methods can be applied to improving the accuracy of compressed data.
Resumo:
Optimal location on the transport infrastructure is the preferable requirement for many decision making processes. Most studies have focused on evaluating performances of optimally locate p facilities by minimizing their distances to a geographically distributed demand (n) when p and n vary. The optimal locations are also sensitive to geographical context such as road network, especially when they are asymmetrically distributed in the plane. The influence of alternating road network density is however not a very well-studied problem especially when it is applied in a real world context. This paper aims to investigate how the density level of the road network affects finding optimal location by solving the specific case of p-median location problem. A denser network is found needed when a higher number of facilities are to locate. The best solution will not always be obtained in the most detailed network but in a middle density level. The solutions do not further improve or improve insignificantly as the density exceeds 12,000 nodes, some solutions even deteriorate. The hierarchy of the different densities of network can be used according to location and transportation purposes and increase the efficiency of heuristic methods. The method in this study can be applied to other location-allocation problem in transportation analysis where the road network density can be differentiated.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
In this paper, some new constraints and an extended formulation are presented for a Lot Sizing and Scheduling Model proposed in the literature. In the production process considered a key material is prepared and is transformed into different final items. The sequencing decisions are related to the order in which the materials are processed and the lot sizing decisions are related to the final items production. The mathematical formulation considers sequence-dependent setup costs and times. Results of the computational tests executed using the software Cplex 10.0 showed that the performance of the branch-and-cut method can be improved by the proposed a priori reformulation.
Resumo:
This paper presents a mixed-integer linear programming approach to solving the optimal fixed/switched capacitors allocation (OCA) problem in radial distribution systems with distributed generation. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. © 2011 IEEE.
Reformulações e relaxação Lagrangiana para o problema de dimensionamento de lotes com várias plantas
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS