963 resultados para CPG (Central pattern generator)
Resumo:
Le mouvement masticatoire est généré et coordonné par un générateur de patron central (GPC) situé au niveau du pont. Plusieurs résultats antérieurs de notre laboratoire soutiennent que le réseau de neurones à l’origine de la rythmogénèse est situé dans le noyau sensoriel principal du nerf trijumeau (NVsnpr). Ces mêmes expériences révèlent que des diminutions de la concentration calcique extracellulaire ([Ca2+]e) tiennent une place importante dans la génération des bouffées de décharges des neurones de cette région. Notre laboratoire tente de vérifier si la contribution des astrocytes à l’homéostasie de la concentration calcique extracellulaire est impliquée dans la genèse du rythme. Cette étude a pour but la caractérisation spatiale du syncytium astrocytaire au sein du NVsnpr dorsal et l’étude de l’effet de la [Ca2+]e sur les propriétés astrocytaires électrophysiologiques et de connectivité. Nous avons utilisés pour ce faire la technique d’enregistrement par patch-clamp sur une préparation en tranche de tronc cérébral de rat. Nous démontrons ici que la diminution de la [Ca2+]e n’affecte pas les propriétés électrophysiologiques astrocytaires, mais induit une augmentation de la taille du syncytium. De plus, nous établissons l’existence au sein du NVsnpr dorsal d’une organisation anatomofonctionnelle du réseau astrocytaire calquée sur l’organisation neuronale.
Resumo:
The primary trigger to periodic limb movement (PLM) during sleep is still unknown. Its association with the restless legs syndrome (RLS) is established in humans and was reported in spinal cord injury (SCI) patients classified by the American Spinal Injury Association (ASIA) as A. Its pathogenesis has not been completely unraveled, though recent advances might enhance our knowledge about those malfunctions. PLM association with central pattern generator (CPG) is one of the possible pathologic mechanisms involved. This article reviewed the advances in PLM and RLS genetics, the evolution of CPG functioning, and the neurotransmitters involved in CPG, PLM and RLS. We have proposed that SCI might be a trigger to develop PLM.
Resumo:
Localization of the central rhythm generator (CRG) of spontaneous consummatory licking was studied in freely moving rats by microinjection of tetrodotoxin (TTX) into the pontine reticular formation. Maximum suppression of spontaneous water consumption was elicited by TTX (1 ng) blockade of the oral part of the nucleus reticularis gigantocellularis (NRG), whereas TTX injections into more caudal or rostral locations caused significantly weaker disruption of drinking. To verify the assumption that TTX blocked the proper CRG of licking rather than some relay in its output, spontaneously drinking thirsty rats were intracranially stimulated via electrodes chronically implanted into the oral part of the NRG. Lick-synchronized stimulation (a 100-ms train of 0.1-ms-wide rectangular pulses at 100 Hz and 25-150 microA) applied during continuous licking (after eight regular consecutive licks) caused a phase shift of licks emitted after stimulus delivery. The results suggest that the stimulation has reset the CRG of licking without changing its frequency. The reset-inducing threshold current was lowest during the tongue retraction and highest during the tongue protrusion period of the lick cycle. It is concluded that the CRG of licking is located in the oral part of NRG.
Resumo:
"August, 1971."
Resumo:
How do neurons develop, control, and maintain their electrical signaling properties in spite of ongoing protein turnover and perturbations to activity? From generic assumptions about the molecular biology underlying channel expression, we derive a simple model and show how it encodes an "activity set point" in single neurons. The model generates diverse self-regulating cell types and relates correlations in conductance expression observed in vivo to underlying channel expression rates. Synaptic as well as intrinsic conductances can be regulated to make a self-assembling central pattern generator network; thus, network-level homeostasis can emerge from cell-autonomous regulation rules. Finally, we demonstrate that the outcome of homeostatic regulation depends on the complement of ion channels expressed in cells: in some cases, loss of specific ion channels can be compensated; in others, the homeostatic mechanism itself causes pathological loss of function.
Resumo:
The freshwater mollusc Lymnaea stagnalis was utilized in this study to further the understanding of how network properties change as a result of associative learning, and to determine whether or not this plasticity is dependent on previous experience during development. The respiratory and neural correlates of operant conditioning were first determined in normally reared Lymnaea. The same procedure was then applied to differentially reared Lymnaea, that is, animals that had never experienced aerial respiration during their development. The aim was to determine whether these animals would demonstrate the same responses to the training paradigm. In normally reared animals, a behavioural reduction in aerial respiration was accompanied by numerous changes within the neural network. Specifically, I provide evidence of changes at the level of the respiratory central pattern generator and the motor output. In the differentially reared animals, there was little behavioural data to suggest learning and memory. There were, however, significant differences in the network parameters, similar to those observed in normally reared animals. This demonstrated an effect of operant conditioning on differentially reared animals. In this thesis, I have identified additional correlates of operant conditioning in normally reared animals and provide evidence of associative learning in differentially reared animals. I conclude plasticity is not dependent on previous experience, but is rather ontogenetically programmed within the neural network.
Resumo:
The aim of this study was to investigate the neural correlates of operant conditioning in a semi-intact preparation of the pond snail, Lymnaea stagnalis. Lymnaea learns, via operant conditioning, to reduce its aerial respiratory behaviour in response to an aversive tactile stimulus to its open pneumostome. This thesis demonstrates the successful conditioning of na'ive semiintact preparations to show learning in the dish. Furthermore, these conditioned preparations show long-term memory that persists for at least 18 hours. As the neurons that generate this behaviour have been previously identified I can, for the first time, monitor neural activity during both learning and long-term memory consolidation in the same preparation. In particular, I record from the respiratory neuron Right Pedal Dorsal 1 (RPeD 1) which is part of the respiratory central pattern generator. In this study, I demonstrate that preventing RPeDl impulse activity between training sessions reduces the number of sessions needed to produce long-term memory in the present semi-intact preparation.
Resumo:
A fundamental goal in neurobiology is to understand the development and organization of neural circuits that drive behavior. In the embryonic spinal cord, the first motor activity is a slow coiling of the trunk that is sensory-independent and therefore appears to be centrally driven. Embryos later become responsive to sensory stimuli and eventually locomote, behaviors that are shaped by the integration of central patterns and sensory feedback. In this thesis I used a simple vertebrate model, the zebrafish, to investigate in three manners how developing spinal networks control these earliest locomotor behaviors. For the first part of this thesis, I characterized the rapid transition of the spinal cord from a purely electrical circuit to a hybrid network that relies on both chemical and electrical synapses. Using genetics, lesions and pharmacology we identified a transient embryonic behavior preceding swimming, termed double coiling. I used electrophysiology to reveal that spinal motoneurons had glutamate-dependent activity patterns that correlated with double coiling as did a population of descending ipsilateral glutamatergic interneurons that also innervated motoneurons at this time. This work (Knogler et al., Journal of Neuroscience, 2014) suggests that double coiling is a discrete step in the transition of the motor network from an electrically coupled circuit that can only produce simple coils to a spinal network driven by descending chemical neurotransmission that can generate more complex behaviors. In the second part of my thesis, I studied how spinal networks filter sensory information during self-generated movement. In the zebrafish embryo, mechanosensitive sensory neurons fire in response to light touch and excite downstream commissural glutamatergic interneurons to produce a flexion response, but spontaneous coiling does not trigger this reflex. I performed electrophysiological recordings to show that these interneurons received glycinergic inputs during spontaneous fictive coiling that prevented them from firing action potentials. Glycinergic inhibition specifically of these interneurons and not other spinal neurons was due to the expression of a unique glycine receptor subtype that enhanced the inhibitory current. This work (Knogler & Drapeau, Frontiers in Neural Circuits, 2014) suggests that glycinergic signaling onto sensory interneurons acts as a corollary discharge signal for reflex inhibition during movement. v In the final part of my thesis I describe work begun during my masters and completed during my doctoral degree studying how homeostatic plasticity is expressed in vivo at central synapses following chronic changes in network activity. I performed whole-cell recordings from spinal motoneurons to show that excitatory synaptic strength scaled up in response to decreased network activity, in accordance with previous in vitro studies. At the network level, I showed that homeostatic plasticity mechanisms were not necessary to maintain the timing of spinal circuits driving behavior, which appeared to be hardwired in the developing zebrafish. This study (Knogler et al., Journal of Neuroscience, 2010) provided for the first time important in vivo results showing that synaptic patterning is less plastic than synaptic strength during development in the intact animal. In conclusion, the findings presented in this thesis contribute widely to our understanding of the neural circuits underlying simple motor behaviors in the vertebrate spinal cord.
Resumo:
Simulation tools aid in learning neuroscience by providing the student with an interactive environment to carry out simulated experiments and test hypotheses. The field of neuroscience is well suited for the use of simulation tools since nerve cell signaling can be described by mathematical equations and solved by computer. Neural signaling entails the propagation of electrical current along nerve membrane and transmission to neighboring neurons through synaptic connections. Action potentials and synaptic transmission can be simulated and results displayed for visualization and analysis. The neurosimulator SNNAP (Simulator for Neural Networks and Action Potentials) is a simulation environment that provides users with editors for model building, simulator engine and visual display editor. This paper presents several modeling examples that illustrate some of the capabilities and features of SNNAP. First, the Hodgkin-Huxley (HH) model is presented and the threshold phenomenon is illustrated. Second, small neural networks are described with HH models using various synaptic connections available with SNNAP. Synaptic connections may be modulated through facilitation or depression with SNNAP. A study of vesicle pool dynamics is presented using an AMPA receptor model. Finally, a central pattern generator model of the Aplysia feeding circuit is illustrated as an example of a complex network that may be studied with SNNAP. Simulation code is provided for each case study described and tasks are suggested for further investigation.
Resumo:
While there are many instances of single neurons that can drive rhythmic stimulus-elicited motor programs, such neurons have seldom been found to be necessary for motor program function. In the isolated central nervous system of the marine mollusc Tritonia diomedea, brief stimulation (1 sec) of a peripheral nerve activates an interneuronal central pattern generator that produces the long-lasting (approximately 30-60 sec) motor program underlying the animal's rhythmic escape swim. Here, we identify a single interneuron, DRI (for dorsal ramp interneuron), that (i) conveys the sensory information from this stimulus to the swim central pattern generator, (ii) elicits the swim motor program when driven with intracellular stimulation, and (iii) blocks the depolarizing "ramp" input to the central pattern generator, and consequently the motor program itself, when hyperpolarized during the nerve stimulus. Because most of the sensory information appears to be funneled through this one neuron as it enters the pattern generator, DRI presents a striking example of single neuron control over a complex motor circuit.
Resumo:
Proceedings of the 10th Conference on Dynamical Systems Theory and Applications
Resumo:
Les circuits neuronaux peuvent générer une panoplie de rythmes. Nous pouvons séparer les mécanismes de création de ces rythmes en deux grands types. Le premier consiste de circuits contrôlés par des cellules « pacemakers », ayant une activité rythmique intrinsèque, comme dans le ganglion stomatogastique des crustacés. Le deuxième consiste de circuits multi-neuronaux connectés par un réseau synaptique qui permet une activité rythmique sans la présence de neurones pacemakers, tel que démontré pour les circuits de la nage chez plusieurs vertébrés. Malgré nos connaissances des mécanismes de rhythmogénèse chez les vertébrés adultes, les mécanismes de la création et la maturation de ces circuits locomoteurs chez les embryons restent encore inconnus. Nous avons étudié cette question à l’aide du poisson-zébré où les embryons débutent leur activité motrice par des contractions spontanées alternantes à 17 heures post-fertilisation (hpf). Des études ont démontré que cette activité spontanée n’est pas sensible aux antagonistes de la transmission synaptique chimique et ne requiert pas le rhombencéphale. Après 28 hpf, les embryons commencent à nager et se propulser en réponse au toucher. Des études antérieures on démontré que l’apparition de la nage nécessite le rhombencéphale et la transmission synaptique chimique. Cette thèse explore la possibilité que ces changements comportementaux représentent la progression d’un circuit contrôle par un pacemaker à un circuit ou le rythme provient d’un circuit distribué. En mesurant le groupement des contractions de l’activité spontanée, plutôt que la fréquence moyenne, nous avons découvert une nouvelle forme d’activité spontanée qui débute à 22 hpf. Cette activité consiste de deux contractions alternantes à succession très rapide. Contrairement à l’activité spontanée présente dès 17 hpf cette nouvelle forme d’activité requiert le rhombencéphale et la transmission synaptique chimique, comme démontré pour la nage qui apparait à 28 hpf. Cette forme de comportement intermédiaire représente potentiellement une étape transitoire lors de la maturation des circuits moteurs.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
We quantified gait and stride characteristics (velocity, frequency, stride length, stance and swing duration, and duty factor) in the bursts of locomotion of two small, intermittently moving, closely related South American gymnophthalmid lizards: Vanzosaura rubricauda and Procellosaurinus tetradactylus. They occur in different environments: V rubricauda is widely distributed in open areas with various habitats and substrates, while P. tetradactylus is endemic to dunes in the semi-arid Brazilian Caatinga. Both use trot or walking trot characterised by a lateral sequence. For various substrates in a gradient of roughness (perspex, cardboard, sand, gravel), both species have low relative velocities in comparison with those reported for larger continuously moving lizards. To generate velocity, these animals increase stride frequency but decrease relative stride length. For these parameters, P. tetradactylus showed lower values than V rubricauda. In their relative range of velocities, no significant differences in stride length and frequency were recorded for gravel. However, the slopes of a correlation between velocity and its components were lower in P. tetradactylus on cardboard, whereas on sand this was only observed for velocity and stride length. The data showed that the difference in rhythmic parameters between both species increased with the smoothness of the substrates. Moreover, P. tetradactylus shows a highly specialised locomotor strategy involving lower stride length and frequency for generating lower velocities than in V. rubricauda. This suggests the evolution of a central motor pattern generator to control slower limb movements and to produce fewer and longer pauses in intermittent locomotion. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)