922 resultados para COX-inhibitor
Resumo:
The crystal structures of two polymorphs and two polymorphic hemihydrates of Etoricoxib are reported. Etoricoxib is a non-steroidal anti-inflammatory drug (NSAID) that is a selective inhibitor of COX-2. It is used in the treatment of various types of inflammation, pain and fever. Clas et al. have reported four polymorphs (labeled I through IV) and two solvates (hemi-and sesquihydrate) of the API in US patent 6,441,002 (Clas et al, US patent 6,441,002, 2002). However, no crystal structures have been reported for any of these forms. A comparison was made between the PXRD patterns reported in patent `002 and the powder spectra simulated from single crystal data. The two polymorphs characterized here correspond to form I and form IV of the patent. Form II of the patent could not be obtained by us with a variety of experimental conditions. Form III of the patent corresponds to hemihydrate II of this study. Form III is therefore not a polymorph of form I and form IV. What we have termed hemihydrate I in this study is obtained under a wide variety of conditions and it is also the only hemihydrate reported as such in the patent. Because the Etoricoxib molecule contains no conventional hydrogen bond donors, there cannot be any strong hydrogen bonds in the crystal structures of forms I and IV. The packing is accordingly characterized by weak hydrogen bonds of the C-H center dot center dot center dot O=S and C-H center dot center dot center dot N type. Thermal data were collected for form I, form IV and hemihydrate I to shed some light on relative stabilities. PXRD diffractograms show the transformation of form IV to form I at elevated temperature, indicating that form I is more stable than form IV. However, this transformation occurs only in samples of form IV that contain some form I; it does not occur in pure form IV. The formation of the two hemihydrates could follow from the known tendency of an acceptor-rich molecule to crystallize as a hydrate.
Resumo:
PURPOSE:To assess whether late introduction of a specific COX-2 inhibitor (Meloxicam) can treat and/or prevent the progression of tumors in the stomach of rats submitted to duodenogastric reflux. METHODS: Seventy five male Wistar rats, weighing 150 grams, were submitted to the induction of duodenogastric reflux through the pylorus. At 36 weeks of follow-up were established three experimental groups: DGR36 sacrificed immediately, DGR54 and DGR54MLX both sacrificed at 54th week of follow-up . The animals of the latter group were fed with a rat chow premixed with Meloxicam (2.0 mg/ kg feed; 0.3 mg / kg bw / day) and the other two with standard rat chow. The lesions found in the pyloric mucosa and gastrojejunal anastomosis were analyzed macroscopically and histologically. For statistical analysis was adjusted a generalized linear model assuming a binomial distribution with LOGIT link function. RESULTS: No significant differences were found when comparing the incidences of benign tumor lesions (Adenomatous Hyperplasia), p=0.4915, or malignant (Mucinous Adenocarcinoma), p=0.2731, among groups. CONCLUSION: Late introduction of specific COX-2 inhibitor (Meloxicam) did not treat and was not able to prevent the progression of tumoral lesions induced by duodenogastric reflux in the rat stomachs.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
BACKGROUND: The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. METHODS: In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. RESULTS: Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. CONCLUSION: Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases.
Resumo:
Arachidonic acid metabolism through cyclooxygenase (COX) pathways leads to the generation of biologically active eicosanoids. Eicosanoid expression levels vary during development and progression of gastrointestinal (GI) malignancies. COX-2 is the major COX-isoform responsible for G.I. cancer development/progression. COX-2 expression increases during progression from a normal to cancerous state. Evidence from observational studies has demonstrated that chronic NSAID use reduces the risk of cancer development, while both incidence and risk of death due to G.I. cancers were significantly reduced by daily aspirin intake. A number of randomized controlled trials (APC trial, Prevention of Sporadic Adenomatous Polyps trial, APPROVe trial) have also shown a significant protective effect in patients receiving selective COX-2 inhibitors. However, chronic use of selective COX-2 inhibitors at high doses was associated with increased cardiovascular risk, while NSAIDs have also been associated with increased risk. More recently, downstream effectors of COX-signaling have been investigated in cancer development/progression. PGE 2, which binds to both EP and PPAR receptors, is the major prostanoid implicated in the carcinogenesis of G.I. cancers. The role of TXA 2 in G.I. cancers has also been examined, although further studies are required to uncover its role in carcinogenesis. Other prostanoids investigated include PGD 2 and its metabolite 15d-PGJ2, PGF 1α and PGI 2. Targeting these prostanoids in G.I. cancers has the promise of avoiding cardiovascular toxicity associated with chronic selective COX-2 inhibition, while maintaining anti-tumor reactivity.A progressive sequence from normal to pre-malignant to a malignant state has been identified in G.I. cancers. In this review, we will discuss the role of the COX-derived prostanoids in G.I. cancer development and progression. Targeting these downstream prostanoids for chemoprevention and/or treatment of G.I. cancers will also be discussed. Finally, we will highlight the latest pre-clinical technologies as well as avenues for future investigation in this highly topical research field. © 2011 Elsevier B.V.
Resumo:
8 p.
Resumo:
Abstract The prostanoid biosynthetic enzyme cyclooxygenase-2 (Cox-2) is upregulated in several neuroendocrine tumors. The aim of the current study was to employ a neuroendocrine cell (PC12) model of Cox-2 over-expression to identify gene products that might be implicated in the oncogenic and/or inflammatory actions of this enzyme in the setting of neuroendocrine neoplasia. Expression array and real-time PCR analysis demonstrated that levels of the neuroendocrine marker chromogranin A (CGA) were 2-fold and 3.2-fold higher, respectively, in Cox-2 over-expressing cells (PCXII) vs their control (PCMT) counterparts. Immunocytochemical and immunoblotting analyses confirmed that both intracellular and secreted levels of CGA were elevated in response to Cox-2 induction. Moreover, exogenous addition of prostaglandin E2 (1uÃ?ÂM), mimicked this effect in PCMT cells, while treatment of PCXII cells with the Cox-2 selective inhibitor NS-398 (100 nM) reduced CGA expression levels, thereby confirming the biospecificity of this finding. Levels of neurone specific enolase (NSE) were similar in the two cell lines, suggesting that the effect of Cox-2 on CGA expression was specific and not due to a global enhancement of neuroendocrine marker expression/differentiation. Cox-2-dependent CGA upregulation was associated with significantly increased chromaffin granule number and intracellular and secreted levels of dopamine. CGA promoter-driven reporter gene expression studies provided evidence that prostaglandin E2-dependent upregulation required a proximal cAMP-responsive element (CRE; -71 - -64 bp). This study is the first to demonstrate that Cox-2 upregulates both CGA expression and bioactivity in a neuroendocrine cell line and has major implications for the role of this polypeptide in the pathogenesis of neuroendocrine cancers in which Cox-2 is upregulated.
Resumo:
The development of septic shock is a common and frequently lethal consequence of gram-negative infection. Mediators released by lung macrophages activated by bacterial products such as lipopolysaccharide (LPS) contribute to shock symptoms. We have shown that insulin downregulates LPS-induced TNF production by alveolar macrophages (AMs). In the present study, we investigated the effect of insulin on the LPS-induced production of nitric oxide (NO) and prostaglandin (PG)-E(2), on the expression of inducible nitric oxide synthase ( iNOS) and cyclooxygenase (COX)-2, and on nuclear factor kappa B (NF-kappa B) activation in AMs. Resident AMs from male Wistar rats were stimulated with LPS (100 ng/mL) for 30 minutes. Insulin (1 mU/mL) was added 10 min before LPS. Enzymes expression, NF-kappa B p65 activation and inhibitor of kappa B (I-kappa B) a phosphorylation were assessed by immunobloting; NO by Griess reaction and PGE(2) by enzyme immunoassay (EIA). LPS induced in AMs the expression of iNOS and COX-2 proteins and production of NO and PGE(2), and, in parallel, NF-kappa B p65 activation and cytoplasmic I-kappa B alpha phosphorylation. Administration of insulin before LPS suppressed the expression of iNOS and COX-2, of NO and PGE(2) production and Nuclear NF-kappa B p65 activation. Insulin also prevented cytoplasmic I-kappa Ba phosphorylation. These results show that in AMs stimulated by LPS, insulin prevents nuclear translocation of NF-kappa B, possibly by blocking I-kappa Ba degradation, and supresses the production of NO and PGE(2), two molecules that contribute to septic shock. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Background: Vascular endothelial growth factor (VEGF) is a macromolecule of importance in inflammation that has been implicated in periodontitis. The aims of this study were to investigate VEGF expression during the progression of periodontal disease and to evaluate the effect of a preferential cyclooxygenase (COX)-2 inhibitor meloxicam on VEGF expression and alveolar bone loss in experimentally induced periodontitis.Methods: A total of 120 Wistar rats were randomly separated into groups 1 (control) and 2 (meloxicam, 3 mg/kg/day, intraperitoneally, for 3, 7, 14, or 30 days). Silk ligatures were placed at the gingival margin level of the lower right first molar of all rats. VEGF expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR), Western blot (WB), and immunohistochemical (IHC) analyses. The hemiarcades were processed for histopathologic analysis. RT-PCR and WB results were submitted to analysis of variance, the Tukey test, and Pearson correlation analysis (P<0.05).Results: A reduction in alveolar bone resorption was observed in the meloxicam-treated group compared to the control group at all periods studied. There was a positive correlation between COX-2 mRNA and VEGF mRNA in the gingival tissues and periodontal disease (R = 0.80; P = 0.026). Meloxicam significantly reduced the increased mRNA VEGF expression in diseased tissues after 14 days of treatment (P = 0.023). Some alterations in VEGF receptor I mRNA expression were observed, but these were not statistically significant. VEGF protein expression in WB experiments was significantly higher in diseased sites compared to healthy sites (P<0.05). After 14 days of treatment with meloxicam, an important decrease in VEGF protein expression was detected in diseased tissues (P = 0.08). Qualitative IHC analysis revealed that VEGF protein expression was higher in diseased tissues and decreased in tissues from rats treated with meloxicam.Conclusions: The present data suggest an important role for VEGF in the progression of periodontal disease. Systemic therapy with meloxicam can modify the progression of experimentally induced periodontitis in rats by reducing VEGF expression and alveolar bone loss.
Resumo:
Anti-inflammatory drugs are known to be the most widely-marketed drugs in the world, despite their serious side effects, mainly on the gastrointestinal tract. Thus, there are constant efforts to discover new prototypes with improved therapeutic activity and safety for the patient. Since the advent of the computational chemistry, the theoretical study of the physiological behavior of a new compound and hence an understanding of its supposed mechanism of action have been made a lot more accessible. Thus, molecule-receptor mathematical modeling was applied to compound I (1-(2,6-dichlorophenyl)indolin-2-one), to predict theoretically its ability to inhibit, selectively, the COX-2 isoform of prostaglandin endoperoxide synthase (PGHS-2), and the best positions to introduce chemical groups and to make molecular modifications.
Resumo:
Lumiracoxib is a selective inhibitor of cyclooxygenase-2 (COX-2) approved for the relief of symptoms of chronic inflammatory conditions. The aim of this study was to evaluate the effects of this specific inhibitor of COX-2 as adjunctive treatment on induced periodontitis in rats. Periodontal disease was induced at the first mandibular molar of 60 rats. After 7 days, the ligature was removed and all animals were submitted to scaling and root planing (SRP) along with local irrigation with saline solution and were divided into 2 groups: SRP (n = 30)-received subcutaneous injections of 1 mg/kg of body weight/day of saline solution for 3 days and; SRP + L (n = 30)-received subcutaneous injections of 1 mg/kg of body weight/day of Lumiracoxib for 3 days. Ten animals in each group were killed at 7, 15, and 30 days. The histological description was performed and the histometric values were statistically analyzed. In Group SRP + L, the histometric analysis (0.58 ± 0.08, 0.64 ± 0.06, and 0.56 ± 0.10 mm 2) showed less bone loss (p < 0.05) than Group SRP (1.52 ± 0.08, 1.55 ± 0.09, and 1.49 ± 0.24 mm 2) at 7, 15, and 30 days, respectively. Within the limits of this study it can be concluded that subcutaneous application of specific inhibitor of COX-2 was a beneficial adjunctive treatment for periodontal diseases induced in rats. © 2010 Springer Basel AG.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Abstract Background Mature carotid plaques are complex structures, and their histological classification is challenging. The carotid plaques of asymptomatic and symptomatic patients could exhibit identical histological components. Objectives To investigate whether matrix metalloproteinase 9 (MMP-9), tissue inhibitor of MMP (TIMP), and cyclooxygenase-2 (COX-2) have different expression levels in advanced symptomatic carotid plaques, asymptomatic carotid plaques, and normal tissue. Methods Thirty patients admitted for carotid endarterectomy were selected. Each patient was assigned preoperatively to one of two groups: group I consisted of symptomatic patients (n = 16, 12 males, mean age 66.7 ± 6.8 years), and group II consisted of asymptomatic patients (n = 14, 8 males, mean age 67.6 ± 6.81 years). Nine normal carotid arteries were used as control. Tissue specimens were analyzed for fibromuscular, lipid and calcium contents. The expressions of MMP-9, TIMP-1 and COX-2 in each plaque were quantified. Results Fifty-eight percent of all carotid plaques were classified as Type VI according to the American Heart Association Committee on Vascular Lesions. The control carotid arteries all were classified as Type III. The median percentage of fibromuscular tissue was significantly greater in group II compared to group I (p < 0.05). The median percentage of lipid tissue had a tendency to be greater in group I than in group II (p = 0.057). The percentages of calcification were similar among the two groups. MMP-9 protein expression levels were significantly higher in group II and in the control group when compared with group I (p < 0.001). TIMP-1 expression levels were significantly higher in the control group and in group II when compared to group I, with statistical difference between control group and group I (p = 0.010). COX-2 expression levels did not differ among groups. There was no statistical correlation between MMP-9, COX-2, and TIMP-1 levels and fibrous tissue. Conclusions MMP-9 and TIMP-1 are present in all stages of atherosclerotic plaque progression, from normal tissue to advanced lesions. When sections of a plaque are analyzed without preselection, MMP-9 concentration is higher in normal tissues and asymptomatic surgical specimens than in symptomatic specimens, and TIMP-1 concentration is higher in normal tissue than in symptomatic specimens.