959 resultados para COSMIC COINCIDENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientific and programmatic progress toward the development of a cosmic dust collection facility (CDCF) for the proposed space station is documented. Topics addressed include: trajectory sensor concepts; trajectory accuracy and orbital evolution; CDCF pointing direction; development of capture devices; analytical techniques; programmatic progress; flight opportunities; and facility development.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beginning in 1974, a limited effort to collect extraterrestrial dust samples from the stratosphere using impactors mounted on NASA U-2 aircraft was initiated at NASA Ames Research Center (1). Subsequent studies (e.g. 1-9) have clearly established an extraterrestrial origin for some of the material. Attrition of comets is considered to be one of the potential sources of extraterrestrial dust(1,5). Additionally, some of the particles appear to represent a type of primitive material not represented in meteorite collections. In order to provide a greater availability of these samples to the scientific community, NASA-Johnson Space Center (JSC) began in May of 1981 a program dedicated to the systematic collection and curation of cosmic dust for scientific investigation. Collections were made at 18 to 20 km altitude by means of collectors mounted under the wings of a WB57F. When the aircraft reaches operating altitude, the collector plates (impactors) are extended into the ambient airstream with the collection surface normal to the airflow. To prevent particles from bouncing off the surface, the impactors are coated with a film of high viscosity silicone oil. The impactors are sealed in canisters to minimize contamination when not collecting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptic changes at sensory inputs to the dorsal nucleus of the lateral amygdala (LAd) play a key role in the acquisition and storage of associative fear memory. However, neither the temporal nor spatial architecture of the LAd network response to sensory signals is understood. We developed a method for the elucidation of network behavior. Using this approach, temporally patterned polysynaptic recurrent network responses were found in LAd (intra-LA), both in vitro and in vivo, in response to activation of thalamic sensory afferents. Potentiation of thalamic afferents resulted in a depression of intra-LA synaptic activity, indicating a homeostatic response to changes in synaptic strength within the LAd network. Additionally, the latencies of thalamic afferent triggered recurrent network activity within the LAd overlap with known later occurring cortical afferent latencies. Thus, this recurrent network may facilitate temporal coincidence of sensory afferents within LAd during associative learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boolean functions and their Möbius transforms are involved in logical calculation, digital communications, coding theory and modern cryptography. So far, little is known about the relations of Boolean functions and their Möbius transforms. This work is composed of three parts. In the first part, we present relations between a Boolean function and its Möbius transform so as to convert the truth table/algebraic normal form (ANF) to the ANF/truth table of a function in different conditions. In the second part, we focus on the special case when a Boolean function is identical to its Möbius transform. We call such functions coincident. In the third part, we generalize the concept of coincident functions and indicate that any Boolean function has the coincidence property even it is not coincident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dorsal lateral amygdala (LAd) is a vital nucleus for the formation of associations between aversive unconditioned stimuli (US) and neutral stimuli, such as auditory tones, which can become conditioned (CS) to the US through temporal pairing. Important aspects of CS-US associations are believed to occur within the LAd, however relatively little is known about the temporal behavior of local LAd networks. Information about the CS and US enters the LA via a rapid and direct thalamic input and a longer latency cortical path...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cosmological observations of light from type Ia supernovae, the cosmic microwave background and the galaxy distribution seem to indicate that the expansion of the universe has accelerated during the latter half of its age. Within standard cosmology, this is ascribed to dark energy, a uniform fluid with large negative pressure that gives rise to repulsive gravity but also entails serious theoretical problems. Understanding the physical origin of the perceived accelerated expansion has been described as one of the greatest challenges in theoretical physics today. In this thesis, we discuss the possibility that, instead of dark energy, the acceleration would be caused by an effect of the nonlinear structure formation on light, ignored in the standard cosmology. A physical interpretation of the effect goes as follows: due to the clustering of the initially smooth matter with time as filaments of opaque galaxies, the regions where the detectable light travels get emptier and emptier relative to the average. As the developing voids begin to expand the faster the lower their matter density becomes, the expansion can then accelerate along our line of sight without local acceleration, potentially obviating the need for the mysterious dark energy. In addition to offering a natural physical interpretation to the acceleration, we have further shown that an inhomogeneous model is able to match the main cosmological observations without dark energy, resulting in a concordant picture of the universe with 90% dark matter, 10% baryonic matter and 15 billion years as the age of the universe. The model also provides a smart solution to the coincidence problem: if induced by the voids, the onset of the perceived acceleration naturally coincides with the formation of the voids. Additional future tests include quantitative predictions for angular deviations and a theoretical derivation of the model to reduce the required phenomenology. A spin-off of the research is a physical classification of the cosmic inhomogeneities according to how they could induce accelerated expansion along our line of sight. We have identified three physically distinct mechanisms: global acceleration due to spatial variations in the expansion rate, faster local expansion rate due to a large local void and biased light propagation through voids that expand faster than the average. A general conclusion is that the physical properties crucial to account for the perceived acceleration are the growth of the inhomogeneities and the inhomogeneities in the expansion rate. The existence of these properties in the real universe is supported by both observational data and theoretical calculations. However, better data and more sophisticated theoretical models are required to vindicate or disprove the conjecture that the inhomogeneities are responsible for the acceleration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we examine multi-field inflationary models of the early Universe. Since non-Gaussianities may allow for the possibility to discriminate between models of inflation, we compute deviations from a Gaussian spectrum of primordial perturbations by extending the delta-N formalism. We use N-flation as a concrete model; our findings show that these models are generically indistinguishable as long as the slow roll approximation is still valid. Besides computing non-Guassinities, we also investigate Preheating after multi-field inflation. Within the framework of N-flation, we find that preheating via parametric resonance is suppressed, an indication that it is the old theory of preheating that is applicable. In addition to studying non-Gaussianities and preheatng in multi-field inflationary models, we study magnetogenesis in the early universe. To this aim, we propose a mechanism to generate primordial magnetic fields via rotating cosmic string loops. Magnetic fields in the micro-Gauss range have been observed in galaxies and clusters, but their origin has remained elusive. We consider a network of strings and find that rotating cosmic string loops, which are continuously produced in such networks, are viable candidates for magnetogenesis with relevant strength and length scales, provided we use a high string tension and an efficient dynamo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first quarter of the 20th century witnessed a rebirth of cosmology, study of our Universe, as a field of scientific research with testable theoretical predictions. The amount of available cosmological data grew slowly from a few galaxy redshift measurements, rotation curves and local light element abundances into the first detection of the cos- mic microwave background (CMB) in 1965. By the turn of the century the amount of data exploded incorporating fields of new, exciting cosmological observables such as lensing, Lyman alpha forests, type Ia supernovae, baryon acoustic oscillations and Sunyaev-Zeldovich regions to name a few. -- CMB, the ubiquitous afterglow of the Big Bang, carries with it a wealth of cosmological information. Unfortunately, that information, delicate intensity variations, turned out hard to extract from the overall temperature. Since the first detection, it took nearly 30 years before first evidence of fluctuations on the microwave background were presented. At present, high precision cosmology is solidly based on precise measurements of the CMB anisotropy making it possible to pinpoint cosmological parameters to one-in-a-hundred level precision. The progress has made it possible to build and test models of the Universe that differ in the way the cosmos evolved some fraction of the first second since the Big Bang. -- This thesis is concerned with the high precision CMB observations. It presents three selected topics along a CMB experiment analysis pipeline. Map-making and residual noise estimation are studied using an approach called destriping. The studied approximate methods are invaluable for the large datasets of any modern CMB experiment and will undoubtedly become even more so when the next generation of experiments reach the operational stage. -- We begin with a brief overview of cosmological observations and describe the general relativistic perturbation theory. Next we discuss the map-making problem of a CMB experiment and the characterization of residual noise present in the maps. In the end, the use of modern cosmological data is presented in the study of an extended cosmological model, the correlated isocurvature fluctuations. Current available data is shown to indicate that future experiments are certainly needed to provide more information on these extra degrees of freedom. Any solid evidence of the isocurvature modes would have a considerable impact due to their power in model selection.