945 resultados para CONVEX


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We revisit a problem studied by Padakandla and Sundaresan SIAM J. Optim., August 2009] on the minimization of a separable convex function subject to linear ascending constraints. The problem arises as the core optimization in several resource allocation problems in wireless communication settings. It is also a special case of an optimization of a separable convex function over the bases of a specially structured polymatroid. We give an alternative proof of the correctness of the algorithm of Padakandla and Sundaresan. In the process we relax some of their restrictions placed on the objective function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reynolds averaged Navier-Stokes model performances in the stagnation and wake regions for turbulent flows with relatively large Lagrangian length scales (generally larger than the scale of geometrical features) approaching small cylinders (both square and circular) is explored. The effective cylinder (or wire) diameter based Reynolds number, ReW ≤ 2.5 × 103. The following turbulence models are considered: a mixing-length; standard Spalart and Allmaras (SA) and streamline curvature (and rotation) corrected SA (SARC); Secundov's νt-92; Secundov et al.'s two equation νt-L; Wolfshtein's k-l model; the Explicit Algebraic Stress Model (EASM) of Abid et al.; the cubic model of Craft et al.; various linear k-ε models including those with wall distance based damping functions; Menter SST, k-ω and Spalding's LVEL model. The use of differential equation distance functions (Poisson and Hamilton-Jacobi equation based) for palliative turbulence modeling purposes is explored. The performance of SA with these distance functions is also considered in the sharp convex geometry region of an airfoil trailing edge. For the cylinder, with ReW ≈ 2.5 × 103 the mixing length and k-l models give strong turbulence production in the wake region. However, in agreement with eddy viscosity estimates, the LVEL and Secundov νt-92 models show relatively little cylinder influence on turbulence. On the other hand, two equation models (as does the one equation SA) suggest the cylinder gives a strong turbulence deficit in the wake region. Also, for SA, an order or magnitude cylinder diameter decrease from ReW = 2500 to 250 surprisingly strengthens the cylinder's disruptive influence. Importantly, results for ReW ≪ 250 are virtually identical to those for ReW = 250 i.e. no matter how small the cylinder/wire its influence does not, as it should, vanish. Similar tests for the Launder-Sharma k-ε, Menter SST and k-ω show, in accordance with physical reality, the cylinder's influence diminishing albeit slowly with size. Results suggest distance functions palliate the SA model's erroneous trait and improve its predictive performance in wire wake regions. Also, results suggest that, along the stagnation line, such functions improve the SA, mixing length, k-l and LVEL results. For the airfoil, with SA, the larger Poisson distance function increases the wake region turbulence levels by just under 5%. © 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1972, Maschler, Peleg and Shapley proved that in the class of convex the nucleolus and the kernel coincide. The only aim of this note is to provide a shorter, alternative proof of this result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that the SD-prenucleolus satisfies monotonicity in the class of convex games. The SD-prenucleolus is thus the only known continuous core concept that satisfies monotonicity for convex games. We also prove that for convex games the SD-prenucleolus and the SD-prekernel coincide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demixing is the task of identifying multiple signals given only their sum and prior information about their structures. Examples of demixing problems include (i) separating a signal that is sparse with respect to one basis from a signal that is sparse with respect to a second basis; (ii) decomposing an observed matrix into low-rank and sparse components; and (iii) identifying a binary codeword with impulsive corruptions. This thesis describes and analyzes a convex optimization framework for solving an array of demixing problems.

Our framework includes a random orientation model for the constituent signals that ensures the structures are incoherent. This work introduces a summary parameter, the statistical dimension, that reflects the intrinsic complexity of a signal. The main result indicates that the difficulty of demixing under this random model depends only on the total complexity of the constituent signals involved: demixing succeeds with high probability when the sum of the complexities is less than the ambient dimension; otherwise, it fails with high probability.

The fact that a phase transition between success and failure occurs in demixing is a consequence of a new inequality in conic integral geometry. Roughly speaking, this inequality asserts that a convex cone behaves like a subspace whose dimension is equal to the statistical dimension of the cone. When combined with a geometric optimality condition for demixing, this inequality provides precise quantitative information about the phase transition, including the location and width of the transition region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The connections between convexity and submodularity are explored, for purposes of minimizing and learning submodular set functions.

First, we develop a novel method for minimizing a particular class of submodular functions, which can be expressed as a sum of concave functions composed with modular functions. The basic algorithm uses an accelerated first order method applied to a smoothed version of its convex extension. The smoothing algorithm is particularly novel as it allows us to treat general concave potentials without needing to construct a piecewise linear approximation as with graph-based techniques.

Second, we derive the general conditions under which it is possible to find a minimizer of a submodular function via a convex problem. This provides a framework for developing submodular minimization algorithms. The framework is then used to develop several algorithms that can be run in a distributed fashion. This is particularly useful for applications where the submodular objective function consists of a sum of many terms, each term dependent on a small part of a large data set.

Lastly, we approach the problem of learning set functions from an unorthodox perspective---sparse reconstruction. We demonstrate an explicit connection between the problem of learning set functions from random evaluations and that of sparse signals. Based on the observation that the Fourier transform for set functions satisfies exactly the conditions needed for sparse reconstruction algorithms to work, we examine some different function classes under which uniform reconstruction is possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to investigate to what extent the known theory of subdifferentiability and generic differentiability of convex functions defined on open sets can be carried out in the context of convex functions defined on not necessarily open sets. Among the main results obtained I would like to mention a Kenderov type theorem (the subdifferential at a generic point is contained in a sphere), a generic Gâteaux differentiability result in Banach spaces of class S and a generic Fréchet differentiability result in Asplund spaces. At least two methods can be used to prove these results: first, a direct one, and second, a more general one, based on the theory of monotone operators. Since this last theory was previously developed essentially for monotone operators defined on open sets, it was necessary to extend it to the context of monotone operators defined on a larger class of sets, our "quasi open" sets. This is done in Chapter III. As a matter of fact, most of these results have an even more general nature and have roots in the theory of minimal usco maps, as shown in Chapter II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many engineering applications face the problem of bounding the expected value of a quantity of interest (performance, risk, cost, etc.) that depends on stochastic uncertainties whose probability distribution is not known exactly. Optimal uncertainty quantification (OUQ) is a framework that aims at obtaining the best bound in these situations by explicitly incorporating available information about the distribution. Unfortunately, this often leads to non-convex optimization problems that are numerically expensive to solve.

This thesis emphasizes on efficient numerical algorithms for OUQ problems. It begins by investigating several classes of OUQ problems that can be reformulated as convex optimization problems. Conditions on the objective function and information constraints under which a convex formulation exists are presented. Since the size of the optimization problem can become quite large, solutions for scaling up are also discussed. Finally, the capability of analyzing a practical system through such convex formulations is demonstrated by a numerical example of energy storage placement in power grids.

When an equivalent convex formulation is unavailable, it is possible to find a convex problem that provides a meaningful bound for the original problem, also known as a convex relaxation. As an example, the thesis investigates the setting used in Hoeffding's inequality. The naive formulation requires solving a collection of non-convex polynomial optimization problems whose number grows doubly exponentially. After structures such as symmetry are exploited, it is shown that both the number and the size of the polynomial optimization problems can be reduced significantly. Each polynomial optimization problem is then bounded by its convex relaxation using sums-of-squares. These bounds are found to be tight in all the numerical examples tested in the thesis and are significantly better than Hoeffding's bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the author presents a method called Convex Model Predictive Control (CMPC) to control systems whose states are elements of the rotation matrices SO(n) for n = 2, 3. This is done without charts or any local linearization, and instead is performed by operating over the orbitope of rotation matrices. This results in a novel model predictive control (MPC) scheme without the drawbacks associated with conventional linearization techniques such as slow computation time and local minima. Of particular emphasis is the application to aeronautical and vehicular systems, wherein the method removes many of the trigonometric terms associated with these systems’ state space equations. Furthermore, the method is shown to be compatible with many existing variants of MPC, including obstacle avoidance via Mixed Integer Linear Programming (MILP).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.

In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:

  • For a given number of measurements, can we reliably estimate the true signal?
  • If so, how good is the reconstruction as a function of the model parameters?

More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Riesz space with a Hausdorff, locally convex topology determined by Riesz seminorms is called a locally convex Riesz space. A sequence {xn} in a locally convex Riesz space L is said to converge locally to x ϵ L if for some topologically bounded set B and every real r ˃ 0 there exists N (r) and n ≥ N (r) implies x – xn ϵ rb. Local Cauchy sequences are defined analogously, and L is said to be locally complete if every local Cauchy sequence converges locally. Then L is locally complete if and only if every monotone local Cauchy sequence has a least upper bound. This is a somewhat more general form of the completeness criterion for Riesz – normed Riesz spaces given by Luxemburg and Zaanen. Locally complete, bound, locally convex Riesz spaces are barrelled. If the space is metrizable, local completeness and topological completeness are equivalent.

Two measures of the non-archimedean character of a non-archimedean Riesz space L are the smallest ideal Ao (L) such that quotient space is Archimedean and the ideal I (L) = { x ϵ L: for some 0 ≤ v ϵ L, n |x| ≤ v for n = 1, 2, …}. In general Ao (L) ᴝ I (L). If L is itself a quotient space, a necessary and sufficient condition that Ao (L) = I (L) is given. There is an example where Ao (L) ≠ I (L).

A necessary and sufficient condition that a Riesz space L have every quotient space Archimedean is that for every 0 ≤ u, v ϵ L there exist u1 = sup (inf (n v, u): n = 1, 2, …), and real numbers m1 and m2 such that m1 u1 ≥ v1 and m2 v1 ≥ u1. If, in addition, L is Dedekind σ – complete, then L may be represented as the space of all functions which vanish off finite subsets of some non-empty set.