990 resultados para CONTRAST AGENTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In hemodialysis patients, radiographic imaging with iodinated contrast medium (ICM) application plays a central role in the diagnosis and/or follow-up of disease-related conditions. Therefore, safety aspects concerning ICM administration and radiation exposure have a great impact on this group of patients. Current hardware and software improvements including the design and synthesis of modern contrast compounds allow the use of very small amounts of ICM in concert with low radiation exposure. Undesirable ICM side effects are divided into type A (predictable reactions such as heat feeling, headache, and contrast-induced acute kidney injury, for example) and type B (nonpredictable or hypersensitivity) reactions; this chapter deals with the latter. The first onset cannot be prevented. To prevent hypersensitivity upon reexposure of ICM, an allergological workup is recommended. If this is not possible and ICM is necessary, the patient should receive a premedication (H1 antihistamine with or without corticosteroids). Current imaging hardware and software improvements (e.g. such as additional filtration of the X-ray beam) allow the use of very small amount of ICM and small X-ray doses. Proper communication among the team involved in the treatment of a patient may allow to apply imaging protocols and efficient imaging strategies limiting radiation exposure to a minimum. Practical recommendations will guide the reader how to use radiation and ICM efficiently to improve both patient and staff safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To determine the effect of the use of iodinated contrast agents on the formation of DNA double-strand breaks during chest computed tomography (CT). MATERIALS AND METHODS This study was approved by the institutional review board, and written informed consent was obtained from all patients. This single-center study was performed at a university hospital. A total of 179 patients underwent contrast material-enhanced CT, and 66 patients underwent unenhanced CT. Blood samples were taken from these patients prior to and immediately after CT. In these blood samples, the average number of phosphorylated histone H2AX (γH2AX) foci per lymphocyte was determined with fluorescence microscopy. Significant differences between the number of foci that developed in both the presence and the absence of the contrast agent were tested by using an independent sample t test. RESULTS γH2AX foci levels were increased in both groups after CT. Patients who underwent contrast-enhanced CT had an increased amount of DNA radiation damage (mean increase ± standard error of the mean, 0.056 foci per cell ± 0.009). This increase was 107% ± 19 higher than that in patients who underwent unenhanced CT (mean increase, 0.027 foci per cell ± 0.014). CONCLUSION The application of iodinated contrast agents during diagnostic x-ray procedures, such as chest CT, leads to a clear increase in the level of radiation-induced DNA damage as assessed with γH2AX foci formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liposome systems are well reported for their activity as vaccine adjuvants; however novel lipid-based microbubbles have also been reported to enhance the targeting of antigens into dendritic cells (DCs) in cancer immunotherapy (Suzuki et al 2009). This research initially focused on the formulation of gas-filled lipid coated microbubbles and their potential activation of macrophages using in vitro models. Further studies in the thesis concentrated on aqueous-filled liposomes as vaccine delivery systems. Initial work involved formulating and characterising four different methods of producing lipid-coated microbubbles (sometimes referred to as gas-filled liposomes), by homogenisation, sonication, a gas-releasing chemical reaction and agitation/pressurisation in terms of stability and physico-chemical characteristics. Two of the preparations were tested as pressure probes in MRI studies. The first preparation composed of a standard phospholipid (DSPC) filled with air or nitrogen (N2), whilst in the second method the microbubbles were composed of a fluorinated phospholipid (F-GPC) filled with a fluorocarbon saturated gas. The studies showed that whilst maintaining high sensitivity, a novel contrast agent which allows stable MRI measurements of fluid pressure over time, could be produced using lipid-coated microbubbles. The F-GPC microbubbles were found to withstand pressures up to 2.6 bar with minimal damage as opposed to the DSPC microbubbles, which were damaged at above 1.3 bar. However, it was also found that DSPC-filled with N2 microbubbles were also extremely robust to pressure and their performance was similar to that of F-GPC based microbubbles. Following on from the MRI studies, the DSPC-air and N2 filled lipid-based microbubbles were assessed for their potential activation of macrophages using in vitro models and compared to equivalent aqueous-filled liposomes. The microbubble formulations did not stimulate macrophage uptake, so studies thereafter focused on aqueous-filled liposomes. Further studies concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyldioctadecylammonium (DDA) and immunomodulatory trehalose dibehenate (TDB) with the addition of polyethylene glycol (PEG). One of the proposed hypotheses for the mechanism behind the immunostimulatory effect obtained with DDA:TDB is the ‘depot effect’ in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. The depot effect has been suggested to be primarily due to their cationic nature. Results reported within this thesis demonstrate that higher levels of PEG i.e. 25 % were able to significantly inhibit the formation of a liposome depot at the injection site and also severely limit the retention of antigen at the site. This therefore resulted in a faster drainage of the liposomes from the site of injection. The versatility of cationic liposomes based on DDA:TDB in combination with different immunostimulatory ligands including, polyinosinic-polycytidylic acid (poly (I:C), TLR 3 ligand), and CpG (TLR 9 ligand) either entrapped within the vesicles or adsorbed onto the liposome surface was investigated for immunogenic capacity as vaccine adjuvants. Small unilamellar (SUV) DDA:TDB vesicles (20-100 nm native size) with protein antigen adsorbed to the vesicle surface were the most potent in inducing both T cell (7-fold increase) and antibody (up to 2 log increase) antigen specific responses. The addition of TLR agonists poly(I:C) and CpG to SUV liposomes had small or no effect on their adjuvanticity. Finally, threitol ceramide (ThrCer), a new mmunostimulatory agent, was incorporated into the bilayers of liposomes composed of DDA or DSPC to investigate the uptake of ThrCer, by dendritic cells (DCs), and presentation on CD1d molecules to invariant natural killer T cells. These systems were prepared both as multilamellar vesicles (MLV) and Small unilamellar (SUV). It was demonstrated that the IFN-g secretion was higher for DDA SUV liposome formulation (p<0.05), suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Cardiovascular diseases are the most prevalent cause of morbidity and mortality affecting millions of people globally. The most effective way to counter cardiovascular complications is early diagnosis and the safest non-invasive diagnostic approach is magnetic resonance imaging (MRI). In this study, superparamagnetic ferrite nanoparticles doped with zinc, exhibiting highly enhanced saturation magnetization and T2 and computed tomography (CT) contrast were synthesized. These nanoparticles have been strategically engineered using bovine lactoferrin (Lf), polyethylene glycol (PEG), and heat shock protein (Hsp)-70 antibody specifically targeting atherosclerosis with potential therapeutic value. The nanocomplexes were further validated in vitro to assess their cytotoxicity, internalization efficiency, effects on cellular proliferation and were assessed for MRI as well as X-ray CT in ex vivo Psammomys obesus rat model.

RESULTS: Optimized zinc doped ferrite nanoparticles (Zn0.4Fe2.6O4) with enhanced value of maximum saturation magnetization value on 108.4 emu/g and an average diameter of 24 ± 2 nm were successfully synthesized. Successfully incorporation with bovine lactoferrin, PEG and Hsp-70 (70 kDa) antibody led to synthesis of spherical nanocomplexes (size 224.8 nm, PDI 0.398). A significantly higher enhancement in T2 (p < 0.05, 1.22-fold) and slightly higher T1 (1.09-fold) and CT (1.08-fold) contrast compared to commercial ferrite nanoparticles was observed. The nanocomplexes exhibited effective cellular internalization within 2 h in both THP-1 and Jurkat cells. MRI scans of contrast agent injected animal revealed significant arterial narrowing and a significantly higher T2 (p < 0.05, 1.71-fold) contrast in adult animals when compared to juvenile and control animals. The excised heart and aorta agar phantoms exhibited weak MRI contrast enhancement in juvenile animal but significant contrast enhancement in adult animal specifically at the aortic arch, descending thoracic aorta and iliac bifurcation region with X-ray CT scan. Histological investigation of the contrast agent injected aorta and heart confirmed site target-specific accumulation at the atherosclerotic aortic arch and descending thoracic aorta of the adult animal with severely damaged intima full of ruptured microatheromas.

CONCLUSION: Overall, the study demonstrates the strategic development of nanocomplex based bimodal MRI and CT contrast agents and its validation on Psammomys obesus for atherosclerosis diagnostics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work investigates the potential of graphene oxide-cobalt ferrite nanoparticle (GO-CoFe2O4) composite as image contrast enhancing material in Magnetic Resonance Imaging (MRI). In the preset work, GO-CoFe2O4 composites were produced by a two-step synthesis process. In the first step, graphene oxide (GO) was synthesized, and in the second step CoFe2O4 nanoparticles were synthesized in a reaction mixture containing GO to yield graphene GO-CoFe2O4 composite. Proton relaxivity value obtained from the composite was 361 mM(-1)s(-1). This value of proton relaxivity is higher than a majority of reported relaxivity values obtained using several ferrite based contrast agents.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Macromolecular conjugates of two kinds of natural polysaccharides, that from Panax quinquefolium linn (PQPS) and Ganoderma applanatum pat (GAPS), with gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) have been synthesized and characterized by means of FTIR, elementary analysis and ICP-AES. Their stability was investigated by competition study with Ca2+, EDTA (ethylenediaminetetraacetic acid) and DTPA. Polysaccharide-bound complexes exhibit T-1 relaxivities of 1.5-1.7 times that of Gd-DTPA in D2O at 25degreesC and 9.4T. MR imaging of Sprague-Dawley (SD) rats showed remarkable enhancement in rat liver and kidney after i.v. injection of these two complexes: liver parenchyma 60.9+/-5.6%, 57.8+/-7.4% at 65-85 min; kidney 144.9+/-14.5%, 199.9+/-25.4% at 10-30 min for PQPS-GdDTPA, GAPS-Gd-DTPA at gadolinium dose of 0.083 and 0.082 mmol/kg, respectively. Our preliminary in vivo and in vitro study indicates that the two kinds of polysaccharide-bound complexes are potential tissue-specific contrast agents for MRI.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two gadolinium polyoxometalates, K9GdW10O36 and K-11 [Gd(PW11O39)(2)], have been evaluated both in vivo and in vitro as candidates for tissue-specific MRI contrast agents. T-1-relaxivities of 6.89 mM(-1) . s(-1) for K9GdW10O36 and 5.27 mM(-1) . s(-1) for K-11[Gd(PW11O39)(2)] are slightly higher than that of the commercial MRI contrast agent (Gd-DTPA). Both compounds bind with bovine serum albumin and human serum transferrin and favorable liver-specific contrast enhancement in in vivo MRI with Sprague-Dawley rats after i.v. administration has been demonstrated. Imaging studies demonstrate that the two agents have a long residence time, showing MR signal enhancement in the liver for more than 40 min, longer than commercially available contrast agents. In vivo and in vitro assays showed that GdW10 and Gd(PW11)(2) are promising liver-specific MRI contrast agents and GdW10 may be used in the diagnosis of the pathological state. However, with the higher acute toxicity, the two gadolinium polyoxometalates need to be modified and studied further before clinical use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Surgery is one of the most effective and widely used procedures in treating human cancers, but a major problem is that the surgeon often fails to remove the entire tumor, leaving behind tumor-positive margins, metastatic lymph nodes, and/or satellite tumor nodules. Here we report the use of a hand-held spectroscopic pen device (termed SpectroPen) and near-infrared contrast agents for intraoperative detection of malignant tumors, based on wavelength-resolved measurements of fluorescence and surface-enhanced Raman scattering (SERS) signals. The SpectroPen utilizes a near-infrared diode laser (emitting at 785 nm) coupled to a compact head unit for light excitation and collection. This pen-shaped device effectively removes silica Raman peaks from the fiber optics and attenuates the reflected excitation light, allowing sensitive analysis of both fluorescence and Raman signals. Its overall performance has been evaluated by using a fluorescent contrast agent (indocyanine green, or ICG) as well as a surface-enhanced Raman scattering (SERS) contrast agent (pegylated colloidal gold). Under in vitro conditions, the detection limits are approximately 2-5 × 10(-11) M for the indocyanine dye and 0.5-1 × 10(-13) M for the SERS contrast agent. Ex vivo tissue penetration data show attenuated but resolvable fluorescence and Raman signals when the contrast agents are buried 5-10 mm deep in fresh animal tissues. In vivo studies using mice bearing bioluminescent 4T1 breast tumors further demonstrate that the tumor borders can be precisely detected preoperatively and intraoperatively, and that the contrast signals are strongly correlated with tumor bioluminescence. After surgery, the SpectroPen device permits further evaluation of both positive and negative tumor margins around the surgical cavity, raising new possibilities for real-time tumor detection and image-guided surgery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. In clinical practice and in clinical trials, echocardiography and scintigraphy are used the most for the evaluation of global left ejection fraction (LVEF) and left ventricular (LV) volumes. Actually, poor quality imaging and geometrical assumptions are the main limitations of LVEF measured by echocardiography. Contrast agents and 3D echocardiography are new methods that may alleviate these potential limitations. Methods. Therefore we sought to examine the accuracy of contrast 3D echocardiography for the evaluation of LV volumes and LVEF relative to MIBI gated SPECT as an independent reference. In 43 patients addressed for chest pain, contrast 3D echocardiography (RT3DE) and MIBI gated SPECT were prospectively performed on the same day. The accuracy and the variability of LV volumes and LVEF measurements were evaluated. Results. Due to good endocardial delineation, LV volumes and LVEF measurements by contrast RT3DE were feasible in 99% of the patients. The mean LV end-diastolic volume (LVEDV) of the group by scintigraphy was 143 65 mL and was underestimated by triplane contrast RT3DE (128 60 mL; p < 0.001) and less by full-volume contrast RT3DE (132 62 mL; p < 0.001). Limits of agreement with scintigraphy were similar for triplane andfull-volume, modalities with the best results for full-volume. Results were similar for calculation of LV end-systolic volume (LVESV). The mean LVEF was 44 16% with scintigraphy and was not significantly different with both triplane contrast RT3DE (45 15%) and full-volume contrast RT3DE (45 15%). There was an excellent correlation between two different observers for LVEDV, LVESV and LVEF measurements and inter observer agreement was also good for both contrast RT3DE techniques. Conclusion. Contrast RT3DE allows an accurate assessment of LVEF compared to the LVEF measured by SPECT, and shows low variability between observers. Although RT3DE triplane provides accurate evaluation of left ventricular function, RT3DE full-volume is superior to triplane modality in patients with suspected coronary artery disease. © 2009 Cosyns et al; licensee BioMed Central Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

 This project focuses on the development of zinc doped ferrite nanoparticle based MRI contrast agents with enhanced contrast and site-specific targeting for atherosclerosis diagnosis. The engineered nanocomplexes developed were validated through MRI scans using rat models with potential for multimodal imaging and effective therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The suspected cause of clinical manifestations of patent foramen ovale (PFO) is a transient or a permanent right-to-left shunt (RLS). Contrast-enhanced transcranial Doppler ultrasound (c-TCD) is a reliable alternative to transesophageal echocardiography (TEE) for diagnosis of PFO, and enables also the detection of extracardiac RLS. The air-containing echo contrast agents are injected intravenously and do not pass the pulmonary circulation. In the presence of RLS, the contrast agents bypass the pulmonary circulation and cause microembolic signals (MES) in the basal cerebral arteries, which are detected by TCD. The two main echo contrast agents in use are agitated saline and D-galactose microparticle solutions. At least one middle cerebral artery (MCA) is insonated, and the ultrasound probe is fixed with a headframe. The monitored Doppler spectra are stored for offline analysis (e.g., videotape) of the time of occurrence and number of MES, which are used to assess the size and functional relevance of the RLS. The examination is more sensitive, if both MCAs are investigated. In the case of negative testing, the examination is repeated using the Valsalva maneuver. Compared to TEE, c-TCD is more comfortable for the patient, enables an easier assessment of the size and functional relevance of the RLS, and allows also the detection of extracardiac RLS. However, c-TCD cannot localize the site of the RLS. Therefore, TEE and TCD are complementary methods and should be applied jointly in order to increase the diagnostic accuracy for detecting PFO and other types of RLS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To determine whether neutral contrast agents with water-equivalent intraluminal attenuation can improve delineation of the bowel wall and increase overall image quality for a non-selected patient population, a neutral oral contrast agent (3% mannitol) was administered to 100 patients referred for abdominal multidetector row computed tomography (MDCT). Their results were compared with those of 100 patients given a positive oral contrast agent. Qualitative and quantitative measurements were done on different levels of the gastrointestinal tract by three experienced readers. Patients given the neutral oral contrast agent showed significant better qualitative results for bowel distension (P < 0.001), homogeneity of the luminal content (P < 0.001), delineation of the bowel-wall to the lumen (P < 0.001) and to the mesentery (P < 0.001) and artifacts (P < 0.001), leading to a significant better overall image quality (P < 0.001) than patients receiving positive oral contrast medium. The quantitative measurements revealed significant better distension (P < 0.001) and wall to lumen delineation (P < 0.001) for the patients receiving neutral oral contrast medium. The present results show that the neutral oral contrast agent (mannitol) produced better distension, better homogeneity and better delineation of the bowel wall leading to a higher overall image quality than the positive oral contrast medium in a non-selected patient population.