956 resultados para CONGENITAL HYPERINSULINISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In anisometropia, the two eyes have unequal refractive power. Anisometropia is a risk factor for amblyopia. The visual deficiencies are thought to be irreversible after the first decade of life. There is, however, accumulating evidence that neural plasticity exists also in adult brains. The aim of this study was to investigate functional outcome of excimer laser refractive surgery in adult anisometropic and visually impaired patients. Additional goal was to examine changes in the primary visual cortex (V1) using multifocal functional magnetic resonance imaging (mffMRI) after laser refractive surgery. Study I comprised of 57 anisometropic patients (anisometropia of ≥3.25 diopters) and 174 isometropic myopic subjects formed the control group. A significant improvement in best-spectacle-corrected visual acuity (BSCVA) among myopic control subjects was evident 3 months postoperatively. The improvement in BSCVA was significantly slower for anisometropic patients and the improvement appeared to persist to the end of the follow-up (24 months). In study II we found that refractive surgery may be also successfully used for iathrogenic anisometropia. In Study III we evaluated mildly visually impaired adult patients after refractive surgery. There was a statistically significant improvement in BSCVA among visually impaired patients and the difference in the mean BSCVA between visually impaired patients and isometropic myopic control subjects diminished during follow-up. Study IV was a prospective follow-up trial examining the changes in the primary visual cortex after refractive surgery. Two anisometropic patients and two isometropic myopic patients were examined with a 61-region mffMRI before refractive surgery and at three, six, nine and twelve months postoperatively. In this study, a dramatic decrease in the number of active voxels in the fovea was found among anisometropic patients. The results presented in this thesis revealed that refractive surgery may be successfully used for the treatment of anisometropic adults with both congenital and iatrogenic anisometropia and for mildly visually impaired adults. The findings in conclusion strengthen our hypothesis of plastic changes in the visual cortex of adult anisometropic and mildly visually impaired patients after refractive surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rare autosomal recessive disease congenital chloride diarrhea (CLD) is caused by mutations in the solute carrier family 26 member 3 (SLC26A3) gene on chromosome 7q22.3-31.1. SLC26A3 encodes for an apical epithelial chloride-bicarbonate exchanger, the intestinal loss of which leads to profuse chloride-rich diarrhea, and a tendency to hypochloremic and hypokalemic metabolic alkalosis. Although untreated CLD is usually lethal in early infancy, the development of salt substitution therapy with NaCl and KCl in the late 1960s made the disease treatable. While the salt substitution allows normal childhood growth and development in CLD, data on long-term outcome have remained unclarified. One of the world s highest incidences of CLD 1:30 000 to 1:40 000 occurs in Finland, and CLD is part of the Finnish disease heritage. We utilized a unique sample of Finnish patients to characterize the long-term outcome of CLD. Another purpose of this study was to search for novel manifestations of CLD based on the extraintestinal expression of the SLC26A3 gene. This study on a sample of 36 patients (ages 10-38) shows that the long-term outcome of treated CLD is favorable. In untreated or poorly treated cases, however, chronic contraction and metabolic imbalance may lead to renal injury and even to renal transplantation. Our results demonstrate a low-level expression of SLC26A3 in the human kidney. Although SLC26A3 may play a minor role in homeostasis, post-transplant recurrence of renal changes shows the unlikelihood of direct transporter modulation in the pathogenesis of CLD-related renal injury. Options to resolve the diarrheal symptoms of CLD have been limited. Unfortunately, our pilot trial indicated the inefficacy of oral butyrate as well. This study reveals novel manifestations of CLD. These include an increased risk for hyperuricemia, inguinal hernias, and probably for intestinal inflammation. The most notable finding of this study is CLD-associated male subfertility. This involves a low concentration of poorly motile spermatozoa with abnormal morphology, high seminal plasma chloride with a low pH, and a tendency to form spermatoceles. That SLC26A3 immunoexpression appeared at multiple sites of the male reproductive tract in part together with the main interacting proteins cystic fibrosis transmembrane conductance regulator (CFTR) and sodium-hydrogen exchanger 3 (NHE3) suggests novel sites for the cooperation of these proteins. As evidence of the cooperation, defects occurring in any of these transporters are associated with reduced male fertility. Together with a finding of high sweat chloride in CLD, this study provides novel data on extraintestinal actions of the SLC26A3 gene both in the male reproductive tract and in the sweat gland. These results provide the basis for future studies regarding the role of SLC26A3 in different tissues, especially in the male reproductive tract. Fortunately, normal spermatogenesis in CLD is likely to make artificial reproductive technologies to treat infertility and even make unassisted reproduction possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital nephrotic syndrome of the Finnish type (NPHS1, CNF) is an autosomal recessive disease, enriched in the Finnish population. NPHS1 is caused by a mutation in the NPHS1 gene. This gene encodes for nephrin, which is a major structural component of the slit diaphragm connecting podocyte foot processes in the glomerular capillary wall. In NPHS1, the genetic defect in nephrin leads to heavy proteinuria already in the newborn period. Finnish NPHS1 patients are nephrectomized at infancy, and after a short period of dialysis the patients receive a kidney transplant, which is the only curative therapy for the disease. In this thesis, we examined the cellular and molecular mechanisms leading to the progression of glomerulosclerosis and tubulointerstitial fibrosis in NPHS1 kidneys. Progressive mesangial expansion in NPHS1 kidneys is caused by mesangial cell hyperplasia and the accumulation of extracellular matrix proteins. Expansion of the extracellular matrix was caused by the normal mesangial cell component, collagen IV. However, no significant changes in mesangial cell phenotype or extracellular matrix component composition were observed. Endotheliosis was the main ultrastructural lesion observed in the endothelium of NPHS1 glomeruli. The abundant expression of vascular endothelial growth factor and its transcription factor hypoxia inducible factor-1 alpha were in accordance with the preserved structure of the endothelium in NPHS1 kidneys. Hypoperfusion of peritubular capillaries and tubulointerstitial hypoxia were evident in NPHS1 kidneys, indicating that these may play an important role in the rapid progression of fibrosis in the kidneys of NPHS1 patients. Upregulation of Angiotensin II was obvious, emphasizing its role in the pathophysiology of NPHS1. Excessive oxidative stress was evident in NPHS1 kidneys, manifested as an increase expression of p22phox, superoxide production, lipid oxide peroxidation and reduced antioxidant activity. In conclusion, our data indicate that mesangial cell proliferation and the accumulation of extracellular matrix accumulation are associated with the obliteration of glomerular capillaries, causing the reduction of circulation in peritubular capillaries. The injury and rarefaction of peritubular capillaries result in impairment of oxygen and nutrient delivery to the tubuli and interstitial cells, which correlates with the fibrosis, tubular atrophy and oxidative stress observed in NPHS1 kidneys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital nephrotic syndrome of the Finnish type (NPHS1) is an autosomal recessive disease which is highly enriched in the Finnish population. It is caused by mutations in the NPHS1 gene encoding for nephrin, which is a major component of the glomerular filtration barrier in the kidney. Patients with NPHS1 have heavy proteinuria and nephrotic syndrome (NS) from birth and develop renal fibrosis in early childhood. Renal transplantation (TX) is the only curative treatment for NPHS1. These patients form the largest group of pediatric kidney transplant children in our country. The NPHS1 kidneys are removed in infancy and they serve as an excellent human material for studies of the pathophysiology of proteinuric kidney diseases. Sustained proteinuria is a major factor leading to end-stage renal failure and understanding this process is crucial for nephrology. In this study we investigated the glomerular and tubulointerstitial changes that occur in the NPHS1 kidneys during infancy as well as the expression of nephrin in non-renal tissues. We also studied the pathology and management of recurrent proteinuria in kidney grafts transplanted to NPHS1 children. Severe renal lesions evolved in patients with NPHS1 during the first months of life. Glomerular sclerosis developed through progressive mesangial sclerosis, and capillary obliteration was an early consequence of this process. Shrinkage of the glomerular tuft was common, whereas occlusion of tubular opening or protrusion of the glomerular tuft into subepithelial space or through the Bowman's capsule were not detected. Few inflammatory cells were detected in the mesangial area. The glomerular epithelial cells (podocytes) showed severe ultrastructural changes and hypertrophy. Podocyte proliferation and apoptosis were rare, but moderate amounts of podocytes were detached and ended up in the urine. The results showed that endocapillary lesions not extracapillary lesions, as generally believed were important for the sclerotic process in the NPHS1 glomeruli. In the tubulointerstitium, severe lesions developed in NPHS1 kidneys during infancy. Despite heavy proteinuria, tubular epithelial cells (TECs) did not show transition into myofibroblasts. The most abundant chemokines in NPHS1 tissue were neutrophil activating protein-2 (NAP-2), macrophage inhibiting factor (MIF), and monocyte chemoattractant protein-1 (MCP-1). Interstitial inflammation and fibrosis were first detected in the paraglomerular areas and the most abundant inflammatory cells were monocytes/macrophages. Arteries and arterioles showed intimal hypertrophy, but the pericapillary microvasculature remained quite normal. However, excessive oxidative stress was evident in NPHS1 kidneys. The results indicated that TECs were relatively resistant to the heavy tubular protein load. Nephrin was at first thought to be podocyte specific, but some studies especially in experimental animals have suggested that nephrin might also be expressed in non-renal tissues such as pancreas and central nervous system. The knowledge of nephrin biology is important for the evaluation of nephrin related diseases. In our study, no significant amounts of nephrin protein or mRNA were detected in non-renal tissues of man and pig as studied by immunohistochemistry and in situ hybridization. The phenotype analysis of NPHS1 children, who totally lack nephrin, revealed no marked impairment in the neurological, testicular, or pancreatic function speaking against the idea that nephrin would play an important functional role outside the kidney. The NPHS1 kidneys do not express nephrin and antibodies against this major glomerular filter protein have been observed in NPHS1 children after renal TX most likely as an immune reaction against a novel antigen. These antibodies have been associated with the development of recurrent NS in the kidney graft of NPHS1 patients. In our study, a third of the NPHS1 patients homozygous for Fin-Major mutation developed recurrent NS in the transplanted graft. Re-transplantations were performed to patients who lost their graft due to recurrent NS and heavy proteinuria immediately developed in all cases. While 73% of the patients had detectable serum anti-nephrin antibodies, the kidney biopsy findings were minimal. Introduction of plasma exchange (PE) to the treatment of recurrent nephroses increased the remission rate from 54% to 89%. If remission was achieved, recurrent NS did not significantly deteriorate the long term graft function. In conclusion, the results show that the lack of nephrin in podocyte slit diaphragm in NPHS1 kidneys induces progressive mesangial expansion and glomerular capillary obliteration and inflicts interstitial fibrosis, inflammation, and oxidative stress with surprisingly little involvement of the TECs in this process. Nephrin appears to have no clinical significance outside the kidney. Development of antibodies against nephrin seems to be a major cause of recurrent NS in kidney grafts of NPHS1 patients and combined use of PE and cyclophosphamide markedly improved remission rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most human ACTA1 skeletal actin gene mutations cause dominant, congenital myopathies often with severely reduced muscle function and neonatal mortality. High sequence conservation of actin means many mutated ACTA1 residues are identical to those in the Drosophila Act88F, an indirect flight muscle specific sarcomeric actin. Four known Act88F mutations occur at the same actin residues mutated in ten ACTA1 nemaline mutations, A138D/P, R256H/L, G268C/D/R/S and R372C/S. These Act88F mutants were examined for similar muscle phenotypes. Mutant homozygotes show phenotypes ranging from a lack of myofibrils to almost normal sarcomeres at eclosion. Aberrant Z-disc-like structures and serial Z-disc arrays, ‘zebra bodies’, are observed in homozygotes and heterozygotes of all four Act88F mutants. These electron-dense structures show homologies to human nemaline bodies/rods, but are much smaller than those typically found in the human myopathy. We conclude that the Drosophila indirect flight muscles provide a good model system for studying ACTA1 mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Congenital hereditary endothelial dystrophy 2 (CHED2) is an autosomal recessive disorder caused by mutations in the solute carrier family 4, sodium borate transporter, member 11 (SLC4A11) gene. The purpose of this study was to identify the genetic cause of CHED2 in six Indian families and catalog all known mutations in the SLC4A11 gene. Methods: Peripheral blood samples were collected from individuals of the families with CHED2 and used in genomic DNA isolation. PCR primers were used to amplify the entire coding region including intron-exon junctions of SLC4A11. Amplicons were subsequently sequenced to identify the mutations. Results: DNA sequence analysis of the six families identified four novel (viz., p.Thr262Ile, p.Gly417Arg, p.Cys611Arg, and p.His724Asp) mutations and one known p.Arg869His homozygous mutation in the SLC4A11 gene. The mutation p.Gly417Arg was identified in two families. Conclusions: This study increases the mutation spectrum of the SLC4A11 gene. A review of the literature showed that the total number of mutations in the SLC4A11 gene described to date is 78. Most of the mutations are missense, followed by insertions-deletions. The present study will be helpful in genetic diagnosis of the families reported here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure-function implication on a novel homozygous Trp250/Gly mutation of transglutaminase-1 (TGM1) observed in a patient of autosomal recessive congenital ichthyosis is invoked from a bioinformatics analysis. Structural consequences of this mutation are hypothesized in comparison to homologous enzyme human factor XIIIA accepted as valid in similar structural analysis and are projected as guidelines for future studies at an experimental level on TGM1 thus mutated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Recent studies in other European countries suggest that the prevalence of congenital cryptorchidism continues to increase. This study aimed to explore the prevalence and natural history of congenital cryptorchidism in a UK centre. METHODS: Between October 2001 and July 2008, 784 male infants were born in the prospective Cambridge Baby Growth Study. 742 infants were examined by trained research nurses at birth; testicular position was assessed using standard techniques. Follow-up assessments were completed at ages 3, 12, 18 and 24 months in 615, 462, 393 and 326 infants, respectively. RESULTS: The prevalence of cryptorchidism at birth was 5.9% (95% CI 4.4% to 7.9%). Congenital cryptorchidism was associated with earlier gestational age (p<0.001), lower birth weight (p<0.001), birth length (p<0.001) and shorter penile length at birth (p<0.0001) compared with other infants, but normal size after age 3 months. The prevalence of cryptorchidism declined to 2.4% at 3 months, but unexpectedly rose again to 6.7% at 12 months as a result of new cases. The cumulative incidence of "acquired cryptorchidism" by age 24 months was 7.0% and these cases had shorter penile length during infancy than other infants (p = 0.003). CONCLUSIONS: The prevalence of congenital cryptorchidism was higher than earlier estimates in UK populations. Furthermore, this study for the first time describes acquired cryptorchidism or "ascending testis" as a common entity in male infants, which is possibly associated with reduced early postnatal androgen activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive genetic disease characterized by the lack of reaction to noxious stimuli and anhidrosis. It is caused by mutations in the NTRK1 gene, which encodes the high affinity tyrosine kinase receptor I for Neurotrophic Growth Factor (NGF). -- Case Presentation: We present the case of a female patient diagnosed with CIPA at the age of 8 months. The patient is currently 6 years old and her psychomotor development conforms to her age (RMN, SPECT and psychological study are in the range of normality). PCR amplification of DNA, followed by direct sequencing, was used to investigate the presence of NTRK1 gene mutations. Reverse transcriptase (RT)-PCR amplification of RNA, followed by cloning and sequencing of isolated RT-PCR products was used to characterize the effect of the mutations on NTRK1 mRNA splicing. The clinical diagnosis of CIPA was confirmed by the detection of two splice-site mutations in NTRK1, revealing that the patient was a compound heterozygote at this gene. One of these alterations, c.574+1G > A, is located at the splice donor site of intron 5. We also found a second mutation, c.2206-2 A > G, not previously reported in the literature, which is located at the splice acceptor site of intron 16. Each parent was confirmed to be a carrier for one of the mutations by DNA sequencing analysis. It has been proposed that the c.574+1G > A mutation would cause exon 5 skipping during NTRK1 mRNA splicing. We could confirm this prediction and, more importantly, we provide evidence that the novel c.2206-2A > G mutation also disrupts normal NTRK1 splicing, leading to the use of an alternative splice acceptor site within exon 17. As a consequence, this mutation would result in the production of a mutant NTRK1 protein with a seven aminoacid in-frame deletion in its tyrosine kinase domain. --Conclusions: We present the first description of a CIPA-associated NTRK1 mutation causing a short interstitial deletion in the tyrosine kinase domain of the receptor. The possible phenotypical implications of this mutation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital microphthalmia is a developmental ocular disorder and might be caused by the mutations in the genes involved in eye development. To uncover the genetic cause in a six-generation Chinese pedigree with autosomal dominant congenital microphthalmia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microphthalmia is a clinically and genetically heterogeneous disorder of eye development. The genetic basis of nonsyndromic microphthalmia is not yet fully understood. Previous studies indicated that disease pedigrees from different genetic backgrounds co

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the long-range limb-specific cis-regulator (ZRS) could cause ectopic shh gene expression and are responsible for preaxial polydactyly (PPD). In this study, we analyzed a large Chinese isolated autosomal dominant PPD pedigree. By fine mapping