957 resultados para COLOR TEXTURE ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this work is to assess the efficacy of texture measures for estimating levels of crowd densities ill images. This estimation is crucial for the problem of crowd monitoring. and control. The assessment is carried out oil a set of nearly 300 real images captured from Liverpool Street Train Station. London, UK using texture measures extracted from the images through the following four different methods: gray level dependence matrices, straight lille segments. Fourier analysis. and fractal dimensions. The estimations of dowel densities are given in terms of the classification of the input images ill five classes of densities (very low, low. moderate. high and very high). Three types of classifiers are used: neural (implemented according to the Kohonen model). Bayesian. and an approach based on fitting functions. The results obtained by these three classifiers. using the four texture measures. allowed the conclusion that, for the problem of crowd density estimation. texture analysis is very effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes the development and study of a novel technique lot the generation of fractal descriptors used in texture analysis. The novel descriptors are obtained from a multiscale transform applied to the Fourier technique of fractal dimension calculus. The power spectrum of the Fourier transform of the image is plotted against the frequency in a log-log scale and a multiscale transform is applied to this curve. The obtained values are taken as the fractal descriptors of the image. The validation of the proposal is performed by the use of the descriptors for the classification of a dataset of texture images whose real classes are previously known. The classification precision is compared to other fractal descriptors known in the literature. The results confirm the efficiency of the proposed method. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational pipeline combining texture analysis and pattern classification algorithms was developed for investigating associations between high-resolution MRI features and histological data. This methodology was tested in the study of dentate gyrus images of sclerotic hippocampi resected from refractory epilepsy patients. Images were acquired using a simple surface coil in a 3.0T MRI scanner. All specimens were subsequently submitted to histological semiquantitative evaluation. The computational pipeline was applied for classifying pixels according to: a) dentate gyrus histological parameters and b) patients' febrile or afebrile initial precipitating insult history. The pipeline results for febrile and afebrile patients achieved 70% classification accuracy, with 78% sensitivity and 80% specificity [area under the reader observer characteristics (ROC) curve: 0.89]. The analysis of the histological data alone was not sufficient to achieve significant power to separate febrile and afebrile groups. Interesting enough, the results from our approach did not show significant correlation with histological parameters (which per se were not enough to classify patient groups). These results showed the potential of adding computational texture analysis together with classification methods for detecting subtle MRI signal differences, a method sufficient to provide good clinical classification. A wide range of applications of this pipeline can also be used in other areas of medical imaging. Magn Reson Med, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 7.4 mm thick strip of 3003 aluminum alloy produced by the industrial twin-roll casting (TRC) process was homogenized at 500 °C for 12 hours, after which it was cold rolled in two conditions: 1) to reduce the strip's thickness by 67%, and 2) to reduce it by 91%. The alloy was annealed at 400 °C for 1 hour in both conditions. The results revealed that a rotated cube texture, the {001}<110> component, predominated in the as-cast condition and was transformed into brass, copper and S type textures during the cold rolling process. There was practically no difference between the deformation textures at the two thickness reductions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a novel texture descriptor based on fractal theory. The method is based on the Bouligand- Minkowski descriptors. We decompose the original image recursively into four equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The proposed descriptors are provided by concatenating such measures. The method is tested in a classification experiment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the novel technique achieves better results than classical and state-of-the-art texture descriptors, such as Local Binary Patterns, Gabor-wavelets and co-occurrence matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper,we present a novel texture analysis method based on deterministic partially self-avoiding walks and fractal dimension theory. After finding the attractors of the image (set of pixels) using deterministic partially self-avoiding walks, they are dilated in direction to the whole image by adding pixels according to their relevance. The relevance of each pixel is calculated as the shortest path between the pixel and the pixels that belongs to the attractors. The proposed texture analysis method is demonstrated to outperform popular and state-of-the-art methods (e.g. Fourier descriptors, occurrence matrix, Gabor filter and local binary patterns) as well as deterministic tourist walk method and recent fractal methods using well-known texture image datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic texture is a recent field of investigation that has received growing attention from computer vision community in the last years. These patterns are moving texture in which the concept of selfsimilarity for static textures is extended to the spatiotemporal domain. In this paper, we propose a novel approach for dynamic texture representation, that can be used for both texture analysis and segmentation. In this method, deterministic partially self-avoiding walks are performed in three orthogonal planes of the video in order to combine appearance and motion features. We validate our method on three applications of dynamic texture that present interesting challenges: recognition, clustering and segmentation. Experimental results on these applications indicate that the proposed method improves the dynamic texture representation compared to the state of the art.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il seguente lavoro di tesi si è concentrato sull'analisi statistica dei dati prodotti dall'imaging di risonanza magnetica di pazienti affetti da tumori di alto grado, in particolare glioblastoma multiforme. Le tipologie di acquisizione d'immagine utilizzate sono state l'imaging pesato in T1 e il Diffusion-Weighted Imaging (DWI). Lo studio è stato suddiviso in due fasi: nella prima è stato considerato un campione di pazienti affetti da glioblastoma multiforme che, dopo il trattamento, avessero manifestato una ricaduta della malattia; per questi pazienti è stato quantificato in che modo la dose erogata durante la terapia si sia distribuita sul target del trattamento, in particolare nella porzione di tessuto in cui andrà a svilupparsi la recidiva. Nella seconda fase, è stato selezionato un campione più ristretto che disponesse, per entrambe le modalità di imaging, di un'acquisizione pre-terapia e di un numero sufficiente di esami di follow up; questo al fine di seguire retrospettivamente l'evoluzione della patologia e analizzare tramite metodi statistici provenienti anche dalla texture analysis, i dati estratti dalle regioni tumorali. Entrambe le operazioni sono state svolte tramite la realizzazione di software dedicati, scritti in linguaggio Matlab. Nel primo capitolo vengono fornite le informazioni di base relative ai tumori cerebrali, con un'attenzione particolare al glioblastoma multiforme e alle sue modalità di trattamento. Nel secondo capitolo viene fatta una panoramica della fisica dell'imaging di risonanza magnetica e delle tecniche di formazione delle immagini, con un'ampia sezione è dedicata all'approfondimento dell'imaging in diffusione. Nel terzo capitolo viene descritto il progetto, i campioni e gli strumenti statistici e di texture analysis utilizzati in questo studio. Il quarto capitolo è dedicato alla descrizione puntuale dei software realizzati durante questo lavoro e nel quinto vengono mostrati i risultati ottenuti dall'applicazione di questi ultimi ai campioni di pazienti esaminati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To (1) establish the feasibility of texture analysis for the in vivo assessment of biochemical changes in meniscal tissue on delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC), and (2) compare textural with conventional T1 relaxation time measurements calculated from dGEMRIC data ("T1(Gd) relaxation times").

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cereals microstructure is one of the primary quality attributes of cereals. Cereals rehydration and milk diffusion depends on such microstructure and thus, the crispiness and the texture, which will make it more palatable for the final consumer. Magnetic Resonance Imaging (MRI) is a very powerful topographic tool since acquisition parameter leads to a wide possibility for identifying textures, structures and liquids mobility. It is suited for non-invasive imaging of water and fats. Rehydration and diffusion cereals processes were measured by MRI at different times and using two different kinds of milk, varying their fat level. Several images were obtained. A combination of textural analysis (based on the analysis of histograms) and segmentation methods (in order to understand the rehydration level of each variety of cereals) were performed. According to the rehydration level, no advisable clustering behavior was found. Nevertheless, some differences were noticeable between the coating, the type of milk and the variety of cereals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicación presentada en el VII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, SNRFAI, Barcelona, abril 1997.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individual analysis of functional Magnetic Resonance Imaging (fMRI) scans requires user-adjustment of the statistical threshold in order to maximize true functional activity and eliminate false positives. In this study, we propose a novel technique that uses radiomic texture analysis (TA) features associated with heterogeneity to predict areas of true functional activity. Scans of 15 right-handed healthy volunteers were analyzed using SPM8. The resulting functional maps were thresholded to optimize visualization of language areas, resulting in 116 regions of interests (ROIs). A board-certified neuroradiologist classified different ROIs into Expected (E) and Non-Expected (NE) based on their anatomical locations. TA was performed using the mean Echo-Planner Imaging (EPI) volume, and 20 rotation-invariant texture features were obtained for each ROI. Using forward stepwise logistic regression, we built a predictive model that discriminated between E and NE areas of functional activity, with a cross-validation AUC and success rate of 79.84% and 80.19% respectively (specificity/sensitivity of 78.34%/82.61%). This study found that radiomic TA of fMRI scans may allow for determination of areas of true functional activity, and thus eliminate clinician bias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"January 1985."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment cores are an essential tool for the analysis of the dynamics of mangrove succession. Coring was used to correlate changes in depositional environments and lateral sedimentary facies with discrete stages of forest succession at the Cananéia-Iguape Coastal System in southeastern Brazil. A local level successional pattern was examined based on four core series T1) a sediment bank; T2) a smooth cordgrass Spartina alterniflora bank; T3) an active mangrove progradation fringe dominated by Laguncularia racemosa, and; T4) a mature mangrove forest dominated by Avicennia schaueriana. Cores were macroscopically described in terms of color, texture, sedimentary structure and organic components. The base of all cores exhibited a similar pattern suggesting common vertical progressive changes in depositional conditions and subsequent successional colonization pattern throughout the forest. The progradation zone is an exposed bank, colonized by S. alterniflora. L. racemosa, replaces S. alterniflora as progradation takes place. As the substrate consolidates A. schaueriana replaces L. racemosa and attains the greatest structural development in the mature forest. Cores collected within the A. schaueriana dominated stand contained S. alterniflora fragments near the base, confirming that a smooth cordgrass habitat characterized the establishment and early seral stages. Cores provide a reliable approach to describe local-level successional sequences in dynamic settings subject to drivers operating on multiple temporal and spatial scales where spatial heterogeneity can lead to multiple equilibria and where similar successional end-points may be reached through convergent paths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La texture est un élément clé pour l’interprétation des images de télédétection à fine résolution spatiale. L’intégration de l’information texturale dans un processus de classification automatisée des images se fait habituellement via des images de texture, souvent créées par le calcul de matrices de co-occurrences (MCO) des niveaux de gris. Une MCO est un histogramme des fréquences d’occurrence des paires de valeurs de pixels présentes dans les fenêtres locales, associées à tous les pixels de l’image utilisée; une paire de pixels étant définie selon un pas et une orientation donnés. Les MCO permettent le calcul de plus d’une dizaine de paramètres décrivant, de diverses manières, la distribution des fréquences, créant ainsi autant d’images texturales distinctes. L’approche de mesure des textures par MCO a été appliquée principalement sur des images de télédétection monochromes (ex. images panchromatiques, images radar monofréquence et monopolarisation). En imagerie multispectrale, une unique bande spectrale, parmi celles disponibles, est habituellement choisie pour générer des images de texture. La question que nous avons posée dans cette recherche concerne justement cette utilisation restreinte de l’information texturale dans le cas des images multispectrales. En fait, l’effet visuel d’une texture est créé, non seulement par l’agencement particulier d’objets/pixels de brillance différente, mais aussi de couleur différente. Plusieurs façons sont proposées dans la littérature pour introduire cette idée de la texture à plusieurs dimensions. Parmi celles-ci, deux en particulier nous ont intéressés dans cette recherche. La première façon fait appel aux MCO calculées bande par bande spectrale et la seconde utilise les MCO généralisées impliquant deux bandes spectrales à la fois. Dans ce dernier cas, le procédé consiste en le calcul des fréquences d’occurrence des paires de valeurs dans deux bandes spectrales différentes. Cela permet, en un seul traitement, la prise en compte dans une large mesure de la « couleur » des éléments de texture. Ces deux approches font partie des techniques dites intégratives. Pour les distinguer, nous les avons appelées dans cet ouvrage respectivement « textures grises » et « textures couleurs ». Notre recherche se présente donc comme une analyse comparative des possibilités offertes par l’application de ces deux types de signatures texturales dans le cas spécifique d’une cartographie automatisée des occupations de sol à partir d’une image multispectrale. Une signature texturale d’un objet ou d’une classe d’objets, par analogie aux signatures spectrales, est constituée d’une série de paramètres de texture mesurés sur une bande spectrale à la fois (textures grises) ou une paire de bandes spectrales à la fois (textures couleurs). Cette recherche visait non seulement à comparer les deux approches intégratives, mais aussi à identifier la composition des signatures texturales des classes d’occupation du sol favorisant leur différentiation : type de paramètres de texture / taille de la fenêtre de calcul / bandes spectrales ou combinaisons de bandes spectrales. Pour ce faire, nous avons choisi un site à l’intérieur du territoire de la Communauté Métropolitaine de Montréal (Longueuil) composé d’une mosaïque d’occupations du sol, caractéristique d’une zone semi urbaine (résidentiel, industriel/commercial, boisés, agriculture, plans d’eau…). Une image du satellite SPOT-5 (4 bandes spectrales) de 10 m de résolution spatiale a été utilisée dans cette recherche. Puisqu’une infinité d’images de texture peuvent être créées en faisant varier les paramètres de calcul des MCO et afin de mieux circonscrire notre problème nous avons décidé, en tenant compte des études publiées dans ce domaine : a) de faire varier la fenêtre de calcul de 3*3 pixels à 21*21 pixels tout en fixant le pas et l’orientation pour former les paires de pixels à (1,1), c'est-à-dire à un pas d’un pixel et une orientation de 135°; b) de limiter les analyses des MCO à huit paramètres de texture (contraste, corrélation, écart-type, énergie, entropie, homogénéité, moyenne, probabilité maximale), qui sont tous calculables par la méthode rapide de Unser, une approximation des matrices de co-occurrences, c) de former les deux signatures texturales par le même nombre d’éléments choisis d’après une analyse de la séparabilité (distance de Bhattacharya) des classes d’occupation du sol; et d) d’analyser les résultats de classification (matrices de confusion, exactitudes, coefficients Kappa) par maximum de vraisemblance pour conclure sur le potentiel des deux approches intégratives; les classes d’occupation du sol à reconnaître étaient : résidentielle basse et haute densité, commerciale/industrielle, agricole, boisés, surfaces gazonnées (incluant les golfs) et plans d’eau. Nos principales conclusions sont les suivantes a) à l’exception de la probabilité maximale, tous les autres paramètres de texture sont utiles dans la formation des signatures texturales; moyenne et écart type sont les plus utiles dans la formation des textures grises tandis que contraste et corrélation, dans le cas des textures couleurs, b) l’exactitude globale de la classification atteint un score acceptable (85%) seulement dans le cas des signatures texturales couleurs; c’est une amélioration importante par rapport aux classifications basées uniquement sur les signatures spectrales des classes d’occupation du sol dont le score est souvent situé aux alentours de 75%; ce score est atteint avec des fenêtres de calcul aux alentours de11*11 à 15*15 pixels; c) Les signatures texturales couleurs offrant des scores supérieurs à ceux obtenus avec les signatures grises de 5% à 10%; et ce avec des petites fenêtres de calcul (5*5, 7*7 et occasionnellement 9*9) d) Pour plusieurs classes d’occupation du sol prises individuellement, l’exactitude dépasse les 90% pour les deux types de signatures texturales; e) une seule classe est mieux séparable du reste par les textures grises, celle de l’agricole; f) les classes créant beaucoup de confusions, ce qui explique en grande partie le score global de la classification de 85%, sont les deux classes du résidentiel (haute et basse densité). En conclusion, nous pouvons dire que l’approche intégrative par textures couleurs d’une image multispectrale de 10 m de résolution spatiale offre un plus grand potentiel pour la cartographie des occupations du sol que l’approche intégrative par textures grises. Pour plusieurs classes d’occupations du sol un gain appréciable en temps de calcul des paramètres de texture peut être obtenu par l’utilisation des petites fenêtres de traitement. Des améliorations importantes sont escomptées pour atteindre des exactitudes de classification de 90% et plus par l’utilisation des fenêtres de calcul de taille variable adaptées à chaque type d’occupation du sol. Une méthode de classification hiérarchique pourrait être alors utilisée afin de séparer les classes recherchées une à la fois par rapport au reste au lieu d’une classification globale où l’intégration des paramètres calculés avec des fenêtres de taille variable conduirait inévitablement à des confusions entre classes.