926 resultados para COATED LIPOSOMES
Resumo:
Three dermaseptins, DS 01, DD K, and DD L, were compared with respect to their structural features and interactions with liposomes. Circular dichroic spectra at alcohols of different chain lengths revealed that DS 01 has the higher helicogenic potential in hydrophobic media. Binding of DS 01, DD K, and DD L to liposomes induced significant blue shifts of the emission spectra of the single tryptophan located at position 3 of all sequences indicating association of the peptides with bilayers. Kinetics evaluation of atomic force microscopy images evidenced the strong fusogenic activity of DS 01 whereas DD K and DD L showed increased lytic activities. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Nanostructured drug delivery systems (NDDS), such as liposomes, represent a growing area in biomedical research. These microheterogeneous media can be used in many biological systems to provide appropriate drug levels with a specific biodistribution. The photophysical properties of a silicon derivative of tribenzonaphthoporphyrazinato (Si-tri-PcNc) incorporated into liposome were studied by steady-state techniques, time-resolved fluorescence and laser flash photolysis. All the spectroscopy measurements performed allowed us to conclude that Si-tri-PcNc in liposome is a promising NDDS for PDT The in vitro experiments with liposomal NDDS showed that the system is not cytotoxic in darkness, but exhibits a substantial phototoxicity at 1 mu M of photosensitizer concentration and 10.0 J/cm(2) of light. These conditions are sufficient to kill about 80% of the cells.
Resumo:
Tissue-nonspecific alkaline phosphatase (TNAP), present on the surface of chondrocyte- and osteoblast-derived matrix vesicles (MVs), plays key enzymatic functions during endochondral ossification. Many studies have shown that MVs are enriched in TNAP and also in cholesterol compared to the plasma membrane. Here we have studied the influence of cholesterol on the reconstitution of TNAP into dipalmitoylphosphatidylcholine (DPPC)-liposomes, monitoring the changes in lipid critical transition temperature (T(c)) and enthalpy variation (Delta H) using differential scanning calorimetry (DSC). DPPC-liposomes revealed a T(c) of 41.5 degrees C and Delta H of 7.63 Kcal mol(-1). The gradual increase in cholesterol concentration decrease Delta H values, reaching a Delta H of 0.87 Kcal mol(-1) for DPPC: cholesterol system with 36 mol% of cholesterol. An increase in T(c), up to 47 degrees C for the DPPC:cholesterol liposomes (36 mol% of Chol), resulted from the increase in the area per molecule in the gel phase. TNAP (0.02 mg/mL) reconstitution was done with protein:lipid 1:10,000 (molar ratio), resulting in 85% of the added enzyme being incorporated. The presence of cholesterol reduced the incorporation of TNAP to 42% of the added enzyme when a lipid composition of 36 mol% of Chol was used. Furthermore, the presence of TNAP in proteoliposomes resulted in a reduction in Delta H. The gradual proportional increase of cholesterol in liposomes results in broadening of the phase transition peak and eventually eliminates the cooperative gel-to-liquid-crystalline phase transition of phospholipids bilayers. Thus, the formation of microdomains may facilitate the clustering of enzymes and transporters known to be functional in MVs during endochondral ossification. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A sensitive, selective, and reproducible in-tube polypyrrole-coated capillary (PPY) solid-phase microextraction and liquid chromatographic method for fluoxetine and norfluoxetine enantiomers analysis in plasma samples has been developed, validated, and further applied to the analysis of plasma samples from elderly patients undergoing therapy with antidepressants. Important factors in the optimization of in-tube SPME efficiency are discussed, including the sample draw/eject volume, draw/eject cycle number, draw/eject flow-rate, sample pH, and influence of plasma proteins. Separation of the analytes was achieved with a Chiralcel OD-R column and a mobile phase consisting of potassium hexafluorophosphate 7.5 mM and sodium phosphate 0.25 M solution, pH 3.0, and acetonitrile (75:25, v/v) in the isocratic mode, at a flow rate of 1.0 mL/min. Detection was carried out by fluorescence absorbance at Ex/Em 230/290 nm. The multifunctional porous surface structure of the PPY-coated film provided high precision and accuracy for enantiomers. Compared with other commercial capillaries, PPY-coated capillary showed better extraction efficiency for all the analytes. The quantification limits of the proposed method were 10 ng/mL for R- and S-fluoxetine, and 15 ng/mL for R- and S-norfluoxetine, with a coefficient of variation lower than 13%. The response of the method for enantiomers is linear over a dynamic range, from the limit of quantification to 700ng/mL, with correlation coefficients higher than 0.9940. The in-tube SPME/LC method can therefore be successfully used to analyze plasma samples from ageing patients undergoing therapy with fluoxetine. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: To target antigen-loaded liposomes to myeloid APC in vivo for immunotherapy and to manipulate immune function through liposome composition. Method: Liposomes were loaded with ovalbumin, the lipophilic red fluorescent marker, DiI, with or without QuilA adjuvant then injected either i.v. or s.c. to naı¨ ve C57Bl/6 mice. Spleen, liver and draining LN were stained with MHC class II and various myeloid markers to determine the uptake of liposomes. Frozen sections of spleen and draining LN were stained with FITC-labeled mAb to determine which cells take up the liposomes. To determine the effect on OVA-specific T cell responses, liposomes were administered to Balb/c mice which received DO11.10 OVAspecific TCR transgenic T cells labelled with CFSE. Results: The DiI fluorescence was visualized in MHC class II+ macrophages and DC in draining lymph nodes after s.c. injection and in spleen and liver after i.v injection. Immunofluorescence microscopy shows liposome uptake in marginal zone macrophages and some DC in the T cell areas of the spleen after i.v. injection. Administration of ova-liposomes with or without QuilA stimulated a specific T cell response as measured by CFSE dilution. Conclusion: APC of liver, spleen and LN, and subsequent antigen presentation to T cells can be targeted for immunotherapy by the administration of liposomes encapsulating antigen and adjuvant. Varying the composition and routes of liposome administration is expected to alter the function of the targeted APC and the T cell response.
Resumo:
Introduction and objectives: Recurrent transplant pyelonephritis (RTP) secondary to vesico-ureteral reflux (VUR) to the transplant kidney (KTx) remains a significant cause of infectious complications with impact on patient and graft outcomes. Our objective was to verify the safety and efficacy of transurethral injection of Durasphere (R) to relieve RTP secondary to VUR after renal transplantation. Patients and methods: Between June 2004 and July 2008, eight patients with RTP (defined as two or more episodes of pyelonephritis after transplantation) and VUR to the KTx were treated with subureteral injections of Durasphere (R). The mean age at surgery was 38.8 +/- 13.8 yr (23-65). The patients were followed regularly every six months. The mean interval between the KTx and the treatment was 76 +/- 74.1 (10-238 months). The mean follow-up was 22.3 +/- 16.1 months (8-57 months). Results: Six patients (75%) were free of pyelonephritis during a mean period of follow-up of 23.2 +/- 17.1 months (8-57 months). Two of them had no VUR and four cases presented with G II VUR (pre-operative G IV three cases and one case G III). In one case, symptomatic recurrent cystitis made a second treatment necessary. This patient remained free of infections for three yr after the first treatment and for 18 months after the second treatment. Of the remaining two patients, one had six episodes of RTP before treatment in a period of three yr and only two episodes after treatment in two yr of follow-up. The last case had a new episode of pyelonephritis five months after treatment. Conclusions: Transurethral injection therapy with Durasphere (R) is a safe and effective minimally invasive treatment option for KTx patients with recurrent RTP. A second treatment seems to be necessary in some cases.
Resumo:
The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.
Resumo:
The present work is a report of the characterization of superparamagnetic iron oxide nanoparticles coated with silicone used as a contrast agent in magnetic resonance imaging of the gastrointestinal tract. The hydrodynamic size of the contrast agent is 281.2 rim, where it was determined by transmission electron microscopy and a Fe(3)O(4) crystalline structure was identified by X-ray diffraction, also confirmed by Mossbauer Spectroscopy. The blocking temperature of 190 K was determined from magnetic measurements based on the Zero Field Cooled and Field Cooled methods. The hysteresis loops were measured at different temperatures below and above the blocking temperature. Ferromagnetic resonance analysis indicated the superparamagnetic nature of the nanoparticles and a strong temperature dependence of the peak-to-peak linewidth Delta H(pp), giromagnetic factor g, number of spins N(S) and relaxation time T(2) were observed. This behavior can be attributed to an increase in the superexchange interaction.
Resumo:
Leishmaniasis is a parasitic disease caused by the intramacrophage protozoa Leishmania spp. and may be fatal if left untreated. Although pentavalent antimonials are toxic and their mechanism of action is unclear, they remain the first-line drugs for treatment of leishmaniasis. An effective therapy could be achieved by delivering antileishmanial drugs to the site of infection. Compared with free drugs, antileishmanial agent-containing liposomes are more effective, less toxic and have fewer adverse side effects. The aim of this study was to develop novel meglumine antimoniate (MA)-containing liposome formulations and to analyse their antileishmanial activity and uptake by macrophages. Determination of the 50% inhibitory concentration (IC(50)) values showed that MA-containing liposomes were >= 10-fold more effective than the free drug, with a 5-fold increase in selectivity index, higher activity and reduced macrophage toxicity. The concentration required to kill 100% of intracellular amastigotes was >= 40-fold lower when MA was encapsulated in liposomes containing phosphatidylserine compared with the free drug. Fluorescence microscopy analysis revealed increased uptake of fluorescent liposomes in infected macrophages after short incubation times compared with non-infected macrophages. In conclusion, these data suggest that MA encapsulated in liposome formulations is more effective against Leishmania-infected macrophages than the non-liposomal drug. Development of liposome formulations is a valuable approach to the treatment of infectious diseases involving the mononuclear phagocyte system. (C) 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Bovine pericardium, for cardiac valve fabrication, was coated with either chitosan or silk fibroin film. In vitro calcification tests of coated and non coated bovine pericardium were performed in simulated body fluid solution in order to investigate potential alternatives to minimize calcification on implanted heart valves. Complementary, morphology was assessed by scanning electron microscopy - SEM; X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) were performed for structural characterization of coatings and biocompatibility of chitosan. Silk fibroin films were assayed by in vitro cytotoxicity and endothelial cell growth tests. Bovine pericardium coated with silk fibroin or chitosan did not present calcification during in vitro calcification tests, indicating that these biopolymeric coatings do not induce bovine pericardium calcification. Chitosan and silk fibroin films were characterized as non cytotoxic and silk fibroin films presented high affinity to endothelial cells. The results indicate that bovine pericardium coated with silk fibroin is a potential candidate for cardiac valve fabrication, since the affinity of silk fibroin to endothelial cells can be explored to induce the tissue endothelization and therefore, increase valve durability by increasing their mechanical resistance and protecting them against calcification. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We present a comparative study of the physico-chemical properties, in vitro cytotoxicity and in vivo antibody production of surface-complexed DNA in EPC/DOTAP/DOPE (50/25/25% molar) liposomes and DOTAP/DOPE (50/50% molar) lipoplexes. The study aims to correlate the biological behavior and structural properties of the lipid carriers. We used DNA-hsp65, whose naked action as a gene vaccine against tuberculosis has already been demonstrated. Additionally, surface-complexed DNA-hsp65 in EPC/DOTAP/DOPE (50/25/25% molar) liposomes was effective as a single-dose tuberculosis vaccine. The results obtained showed that the EPC inclusion stabilized the DOTAP/DOPE structure, producing higher melting temperature and lower zeta potential despite a close mean hydrodynamic diameter. Resemblances in morphologies were identified in both structures, although a higher fraction of loaded DNA was not electrostatically bound in EPC/DOTAP/DOPE. EPC also induced a striking reduction in cytotoxicity, similar to naked DNA-hsp65. The proper immune response lead to a polarized antibody production of the IgG2a isotype, even for the cytotoxic DOTAP/DOPE. However, the antibody production was detected at 15 and 30 days for DOTAP/DOPE and EPC/DOTAP/DOPE, respectively. Therefore, the in vivo antibody production neither correlates with the in vitro cytotoxicity, nor with the structural stability alone. The synergistic effect of the structural stability and DNA electrostatic binding upon the surface of structures account for the immunological effects. By adjusting the composition to generate proper packing and cationic lipid/DNA interaction, we allow for the optimization of liposome formulations for required immunization or gene therapy. In a specific manner, our results contribute to studies on the tuberculosis therapy and vaccination. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, the photodynamic action of liposomes (LP) and nanocapsules (NC) containing Chloroaluminum phthalocyanine (CIAIPc), on the human melanoma cell (WM 1552C), was assessed. The light source was setup at 672 nm, which corresponds to the maximum absorption wavelength of the CIAIPc. Both colloidal carriers presented size in nanometric scale as well as negative zeta potential. The cellular damage was light dose dependent ranging from 30% of cell death at 70 mJ.cm(-2) to 90% of death at 700 mJ.cm(-2). However, the photocytotoxic effect of LP at 70 mJ.cm(-2) was slightly more efficient to induce cellular death than NC formulation. At 140 mJ.cm(-2), and 700 mJ.cm(-2) both nanocarriers were equally efficient to induce cellular damage. Therefore, in the present work, the maximum phototoxic effect was obtained with 700 mJ.cm(-2) of light dose, in combination with 0.29 mu g.mL(-1) of CIAIPc encapsulated into LP and NC. The cells were also positive to annexin V, after the PDT treatment with LP and NC, showing that one of the mechanisms of cellular death involved is apoptosis. In summary, the potential of LP and NC as a drug delivery system, in Photodynamic Therapy (PDT) against melanoma, has been confirmed using a lower concentration of the photosensitizer and lower light doses than that applied in current protocols. This is an innovative proposal to treat melanoma cell lines that until now have not received the benefit of the PDT protocol for treatment.
Resumo:
This study compared ultrasonic chemical vapor deposition (CVD)-coated tip (CVDentus #8.1117-1; Clorovale Diamantes Ind. e Com. Ltda Epp, Sao Jose dos Campos, SP, Brazil) versus high-speed (#FG700L) and low-speed (#699) carbide burs for apicoectomy, evaluating the time required for resection and analyzing the root-end surfaces by scanning electron microscopy. Thirty extracted human premolars had the canals instrumented and obturated and were randomly assigned to 3 groups (n = 10), according to the instrument used for root-end resection. The time required for resection of the apical 2 mm of each root was recorded. The resected apical segments were dried, sputter coated with gold, and examined with a scanning electron microscope at X 350 magnification. A four-point (0-3) scoring system was used to evaluate the apical surface smoothness. The results were analyzed statistically by the Kruskal-Wallis test and two-by-two comparisons analyses were performed using the Miller test. The significance level was set at 5%. Root-end resection with the high-speed bur was significantly faster (p < 0.05) compared with the low-speed bur and CVD tip. The carbide burs produced significantly smoother root-end surfaces than the CVD tip (p < 0.05). The low-speed bur produced the smoothest root-end surfaces, whereas the roughest and most irregular root ends (p < 0.05) were obtained with the CVD tip. However, no statistically significant difference (p > 0.05) was found between the high- and low-speed burs regarding the surface roughness of the resected root ends (p > 0.05). In conclusion, under the tested conditions, ultrasonic root-end resection took a longer time and resulted in rougher surfaces compared with the use of carbide burs at both high and low speed. (J Endod 2009;35:265-268)
Resumo:
The aim of this study was to evaluate the development of the osteoblastic phenotype in human alveolar bone-derived cells grown on collagen type I-coated titanium (Ti) surface (Col-Ti) obtained by plasma deposition acrylic acid grafting compared with machined Ti (M-Ti). Osteoblastic cells were cultured until subconfluence and subcultured on Col-Ti and M-Ti for periods of up to 21 days. Cultures grown on Col-Ti and M-Ti exhibited similar cell morphology. Cell adhesion, total protein content, and alkaline phosphatase (ALP) activity were not affected by Ti surface modification in all evaluated periods. Growth analyses indicated that there were significantly more cells in cultures grown on Col-Ti at day 3. Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG) mRNA expression of cells subcultured on Col-Ti was higher, whereas collagen type I (COL) was lower compared with M-Ti. Ti surface modification neither affected the osteocalcin (OC), ALP and receptor activator of NF-kappa B ligand (RANKL) mRNA expression nor the calcium content extracted from mineralized matrix. These results demonstrated that Col-Ti favours cell growth during the proliferative phase (day 3) and osteoblastic differentiation, as demonstrated by changes in mRNA expression profile during the matrix mineralization phase (day 14), suggesting that this Ti surface modification may affect the processes of bone healing and remodelling. To cite this article:Assis AF, Beloti MM, Crippa GE, de Oliveira PT, Morra M, Rosa AL. Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface.Clin. Oral Impl. Res. 20, 2009; 240-246.doi: 10.1111/j.1600-0501.2008.01641.x.
Resumo:
In this paper theoretical models have been established that can account for the gas transmission through nanocomposite laminates, consisting of an oxide layer of finite permeability containing defects, on a polymer sheet of finite thickness. The defect shapes can either be in the form of long cracks or rectangular holes. The models offer a choice of exact numerical calculations or fast and intuitive analytical approximations. The experimental measurements of oxygen permeation through four different SiOx/poly (ethylene terephthalate) samples that were strained to produce distributions or cracks showed good agreement when compared with predicted results from the approximate analytic model. As a consequence of this observation, a key practical conclusion is that, because of the logarithmic dependence of transmission on the width of a crack, for a given strain it is better to have a small number of large cracks rather than a large number of small cracks. (C) 2001 Elsevier Science B.V. All rights reserved.