955 resultados para CNTF receptor [alpha]"
Resumo:
Phosphorylation of the serine residues in estrogen receptor (ER) α is important in transcriptional activation. Hence, methods to detect such posttranslational modifi cation events are valuable. We describe, in detail, the analysis of the phosphorylated ERα by electrophoretic separation of proteins and subsequent immuno-blotting techniques. In particular, phosphorylation of the ERα is one possible outcome of activation of the putative membrane estrogen receptor (mER), GPR30. Hence, phosphorylation represents a cross talk event between GPR30 and ERα and may be important in estrogen-regulated physiology.
Resumo:
To elucidate the molecular profile of hormonal steroid receptor status, we analyzed ER-alpha, ER-beta, and PGR mRNA and protein expression in 80 breast carcinomas using reverse transcriptase polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunohistochemical analysis. Qualitative analysis revealed positive expression of ER-alpha, ER-beta, and PGR mRNA in 48%, 59%, and 48% of the breast carcinomas, respectively. ER-alpha, ER-beta, and PGR transcript overexpression was observed in 51%, 0%, and 12% of the cases, respectively, whereas moderate or strong protein expression was detected in 68%, 78%, and 49% of the cases, respectively. Tumor grade was negatively correlated with transcript and protein levels of ER-alpha (P = .0169 and P = .0006, respectively) and PGR (P = .0034 and P = .0005, respectively). Similarly, proliferative index Ki-67 was negatively associated with transcript and protein levels of ER-alpha (P = .0006 and P < .0001, respectively) and PGR (P = .0258 and P =. 0005, respectively). These findings suggest that ER-alpha and PGR expression are associated with well-differentiated breast tumors and less directly related to cell proliferation. A significant statistical difference was observed between lymph node status and ER-beta protein expression (P = .0208). In ER-alpha-negative tumors, we detected a correlation between ER-beta protein expression and high levels of Ki-67. These data suggest that ER-beta could be a prognostic marker in human breast cancer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Graves’ ophthalmopathy (GO) is one of the most severe clinical manifestations of Graves’ disease (GD), and its treatment might involve high-dose glucocorticoid therapy. The higher incidence of GO among females, and the reported association between polymorphisms of estrogen receptor (ER) and GD susceptibility have led us to question the role of estrogen and its receptor in GO pathogenesis. We, thus, assessed estrogen receptor-alpha (ERA) gene expression in cultures of orbital fibroblasts from a patient with GO before (controls) and after treatment with 10 nM and 100 nM dexamethasone (DEX). Orbital fibroblasts showed ERA gene expression. In the cells treated with 10 nM and 100 nM DEX, ERA gene expression was, respectively, 85% higher and 74% lower, than in the control group. We concluded that ERA gene expression is found in the orbital fibroblasts of patient with GO, which may be affected by glucocorticoids in a dose-related manner. Arch Endocrinol Metab. 2015;59(3):273-6
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abstract Background The expression of glucocorticoid-receptor (GR) seems to be a key mechanism in the regulation of glucocorticoid (GC) sensitivity and is potentially involved in cases of GC resistance or hypersensitivity. The aim of this study is to describe a method for quantitation of GR alpha isoform (GRα) expression using real-time PCR (qrt-PCR) with analytical capabilities to monitor patients, offering standard-curve reproducibility as well as intra- and inter-assay precision. Results Standard-curves were constructed by employing standardized Jurkat cell culture procedures, both for GRα and BCR (breakpoint cluster region), as a normalizing gene. We evaluated standard-curves using five different sets of cell culture passages, RNA extraction, reverse transcription, and qrt-PCR quantification. Intra-assay precision was evaluated using 12 replicates of each gene, for 2 patients, in a single experiment. Inter-assay precision was evaluated on 8 experiments, using duplicate tests of each gene for two patients. Standard-curves were reproducible, with CV (coefficient of variation) of less than 11%, and Pearson correlation coefficients above 0,990 for most comparisons. Intra-assay and inter-assay were 2% and 7%, respectively. Conclusion This is the first method for quantitation of GRα expression with technical characteristics that permit patient monitoring, in a fast, simple and robust way.
Resumo:
Previous studies have shown that Estrogen Receptor alpha (ERα) is an important indicator for diagnosis, prognosis and treatment of breast cancers. However, the question remains as to the role of ERα in the cell in the presence versus absence of 17-β estradiol In this dissertation the role of ERα in both its unliganded and liganded state, with respect to the cell cycle will be explored. The cell line models used in this project are ER-positive MCF-7 cells with and without siRNA to ERα and ER-positive MDA-MB-231 cells that have been engineered to express ERα. Cells were synchronized and the cell cycle progression was monitored by flow cytometric analysis. Using these methods, two specific questions were addressed: Does ERα modulate the cell cycle differently under liganded versus unliganded conditions? And, does the presence of ERα regulate cell cycle phase transitions? The results show for the first time that ERα is cell cycle regulated and modulates the progression of cells through S and G2/M phases of the cell cycle. Ligand bound ERα increases progression through S and G2/M phases, whereas unliganded ERα acts as an inhibitor of cell cycle progression. To further investigate the cell cycle regulated effects of liganded ERα, a luciferase assay was performed and showed that the transcription of target genes such as Progestrone Receptor (PgR) and Trefoil protein (pS2) increased duing S and G2/M phases when ERα is bound to ligand. Additionally, complex formation between cyclin B and ER α was shown by immunoprecipitation and led to the discovery that anaphase promoting complex (APC) is the E3 ligase for both cyclin B and ERα at the termination of M phase. Our findings suggest that unliganded ERα has an inhibitory effect on the progression of the cell cycle. Therefore, it is reasonable to speculate that the combination of drugs that lower estrogen level (such as aromatase inhibitors) and preserves ERα from degradation would provide better outcome for breast cancer treatment. We have shown that APC functions as the E3 ligase for ERα and thus might provide a target to design a specific inhibitor of ERα degradation.
Resumo:
Estrogen receptor (ER) and the tumor suppressor p53 are key prognostic indicators in breast cancer. Estrogen signaling through its receptor (ER) controls proliferation of normal as well as transformed mammary epithelial cells, and the presence of ER is established as a marker of good prognosis and response to therapy. The p53 tumor suppressor gene is often referred to as the "cellular gatekeeper" due to its extensive control of cell proliferation and apoptosis. Loss of functional p53 is a negative prognostic indicator and is correlated with lack of response to antiestrogens, reduced disease-free interval and increased chance of disease recurrence. Clinical studies have demonstrated that tumors with mutated p53 tend to be ER negative, while ER positive tumors tend to have wild type p53. ^ Recent studies from our lab indicate that p53 genotype correlates with estrogen receptor expression in mammary tumors in vivo. We therefore hypothesized that p53 regulates ER expression in mammary cancer cells by recruitment of specific cofactors to the ER promoter. To test this, MCF-7 cells were treated with doxorubicin or ionizing radiation, both of which stimulated significant increases in p53 expression, as expected, but also increased ER expression in a p53-dependent manner. Furthermore, in cells treated with siRNA targeting p53, both p53 and ER protein levels were significantly reduced. P53 was also demonstrated to transcriptionally regulate the ER promoter in luciferase assays and chromatin immunoprecipitation assays showed that p53 was recruited to the ER promoter along with CARM1, CBP, c-Jun and Sp1 and that this multifactor complex was formed in a p53-dependent manner. The regulation of ER by p53 has therapeutic implications, as the treatment of breast cancer cells with doxorubicin sensitized these cells to tamoxifen treatment. Furthermore, response to tamoxifen as well as to estrogen was dependent on p53 expression in ER positive human breast cancer cells. Taken together, these data demonstrate that p53 regulates ER expression through transcriptional control of the ER promoter, accounting for their concordant expression in human breast cancer and identifying potentially beneficial therapeutic strategies for the treatment of ER positive breast cancers. ^
Resumo:
Hippocampal pyramidal cells, receiving domain specific GABAergic inputs, express up to 10 different subunits of the gamma-aminobutyric acid type A (GABAA) receptor, but only 3 different subunits are needed to form a functional pentameric channel. We have tested the hypothesis that some subunits are selectively located at subsets of GABAergic synapses. The alpha 1 subunit has been found in most GABAergic synapses on all postsynaptic domains of pyramidal cells. In contrast, the alpha 2 subunit was located only in a subset of synapses on the somata and dendrites, but in most synapses on axon initial segments innervated by axo-axonic cells. The results demonstrate that molecular specialization in the composition of postsynaptic GABAA receptor subunits parallels GABAergic cell specialization in targeting synapses to a specific domain of postsynaptic cortical neurons.
Resumo:
Upon stimulation with anti-CD3, suppressor T-cell (Ts) hybridomas and homologous transfectants of T-cell receptor a (TCRalpha) cDNA in the T-cell hybridoma formed a 55-kDa TCRalpha chain derivative that bound both the monoclonal anti-TCRalpha chain and polyclonal antibodies against glycosylation inhibiting factor (GIF). The peptide is a subunit of antigen-specific suppressor T-cell factor (TsF), and is considered to be a posttranslationally-formed conjugate of TCRalpha chain with GIF peptide. The TCRalpha derivative is synthesized by the transfectant after stimulation with anti-CD3, and not derived from TCR present on the cell surface. Stimulation of the stable homologous transfectants with anti-CD3 induced translocation of the 13-kDa GIF peptide into endoplasmic reticulum (ER). When a helper Ts hybridoma or a stable transfectant of the same TCRalpha cDNA in a helper cell-derived TCRalpha- clone was stimulated with anti-CD3, translocation of GIF peptide was not detected, and these cells failed to secrete a TCRalpha derivative. However, further transfection of a chimeric cDNA encoding a procalcitonin-GIF fusion protein into the helper cell-derived stable transfectant of TCRalpha cDNA resulted in translocation of the GIF protein and formation of bioactive 55-kDa GIF. The results indicated that translocation of GIF peptide through ER is unique for Ts cells, and that this process is essential for the formation/secretion of the soluble form derivative of TCRalpha chain by T cells.
Resumo:
Myasthenia gravis is an autoimmune disease in which T cells specific to epitopes of the autoantigen, the human acetylcholine receptor, play a role. We identified two peptides, p195-212 and p259-271, from the alpha subunit of the receptor, which bound to major histocompatibility complex (MHC) class II molecules on antigen-presenting cells (APCs) from peripheral blood lymphocytes of myasthenia gravis patients and stimulated lymphocytes of >80% of the patients. We have prepared analogs of these myasthenogenic peptides and tested their ability to bind to MHC class II determinants and to interfere specifically with T-cell stimulation. We first determined relative binding efficiency of the myasthenogenic peptides and their analogs to APCs of patients. We found that single substituted analogs of p195-212 (Ala-207) and p259-271 (Lys-262) could bind to human MHC molecules on APCs as efficiently as the original peptides. Moreover, dual analogs containing the two single substituted analogs in one stretch (either sequentially, Ala-207/Lys-262, or reciprocally, Lys-262/Ala-207) could also bind to APCs of patients, including those that failed to bind one of the single substituted analogs. The single substituted analogs significantly inhibited T-cell stimulation induced by their respective myasthenogenic peptides in >95% of the patients. The dual analogs were capable of inhibiting stimulation induced by either of the peptides: They inhibited the response to p195-212 and p259-271 in >95% and >90% of the patients, respectively. Thus, the dual analogs are good candidates for inhibition of T-cell responses of myasthenia gravis patients and might have therapeutic potential.