959 resultados para CMR (Cardiovascular Magnetic Resonance)
Resumo:
This article provides expert opinion on the use of cardiovascular magnetic resonance (CMR) in young patients with congenital heart disease (CHD) and in specific clinical situations. As peculiar challenges apply to imaging children, paediatric aspects are repeatedly discussed. The first section of the paper addresses settings and techniques, including the basic sequences used in paediatric CMR, safety, and sedation. In the second section, the indication, application, and clinical relevance of CMR in the most frequent CHD are discussed in detail. In the current era of multimodality imaging, the strengths of CMR are compared with other imaging modalities. At the end of each chapter, a brief summary with expert consensus key points is provided. The recommendations provided are strongly clinically oriented. The paper addresses not only imagers performing CMR, but also clinical cardiologists who want to know which information can be obtained by CMR and how to integrate it in clinical decision-making.
Resumo:
BACKGROUND: Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration. AIM: To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function. METHODS: A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes. RESULTS: Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of -4.73 ± 1.75 ml (-8.67 ± 3.54%, r2 = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis "aligned" vs "not aligned" with the phantom long-axis yielded similar differences vs the reference volume (-4.87 ± 1.73 ml vs. -4.45 ± 1.97 ml, p = 0.67) and short-axis "perpendicular" vs. "not-perpendicular" with the LA long-axis (-4.72 ± 1.66 ml vs. -4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of "slice orientation" and "reconstruction technique", 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes in patients, it was validated in the LA phantoms (mean difference: -1.37 ± 1.35 ml, -2.38 ± 2.44%, r2 = 0.97). Patient study: The CS-cineCMR LA volumes of the mid-diastolic frame matched closely with the reference LA volume (measured by 3D-HR-CMR) with a difference of -2.66 ± 6.5 ml (3.0% underestimation; true LA volumes: 63 ml, 62 ml, and 395 ml). Finally, a high intra- and inter-observer agreement for maximal and minimal LA volume measurement is also shown. CONCLUSIONS: The proposed method combines a highly accelerated single-breathhold compressed-sensing multi-slice CMR technique with a non-model-based 3D reconstruction to accurately and reproducibly measure LA volumes and function.
Resumo:
This article provides expert opinion on the use of cardiovascular magnetic resonance (CMR) in young patients with congenital heart disease (CHD) and in specific clinical situations. As peculiar challenges apply to imaging children, paediatric aspects are repeatedly discussed. The first section of the paper addresses settings and techniques, including the basic sequences used in paediatric CMR, safety, and sedation. In the second section, the indication, application, and clinical relevance of CMR in the most frequent CHD are discussed in detail. In the current era of multimodality imaging, the strengths of CMR are compared with other imaging modalities. At the end of each chapter, a brief summary with expert consensus key points is provided. The recommendations provided are strongly clinically oriented. The paper addresses not only imagers performing CMR, but also clinical cardiologists who want to know which information can be obtained by CMR and how to integrate it in clinical decision-making.
Resumo:
BACKGROUND: For free-breathing cardiovascular magnetic resonance (CMR), the self-navigation technique recently emerged, which is expected to deliver high-quality data with a high success rate. The purpose of this study was to test the hypothesis that self-navigated 3D-CMR enables the reliable assessment of cardiovascular anatomy in patients with congenital heart disease (CHD) and to define factors that affect image quality. METHODS: CHD patients ≥2 years-old and referred for CMR for initial assessment or for a follow-up study were included to undergo a free-breathing self-navigated 3D CMR at 1.5T. Performance criteria were: correct description of cardiac segmental anatomy, overall image quality, coronary artery visibility, and reproducibility of great vessels diameter measurements. Factors associated with insufficient image quality were identified using multivariate logistic regression. RESULTS: Self-navigated CMR was performed in 105 patients (55% male, 23 ± 12y). Correct segmental description was achieved in 93% and 96% for observer 1 and 2, respectively. Diagnostic quality was obtained in 90% of examinations, and it increased to 94% if contrast-enhanced. Left anterior descending, circumflex, and right coronary arteries were visualized in 93%, 87% and 98%, respectively. Younger age, higher heart rate, lower ejection fraction, and lack of contrast medium were independently associated with reduced image quality. However, a similar rate of diagnostic image quality was obtained in children and adults. CONCLUSION: In patients with CHD, self-navigated free-breathing CMR provides high-resolution 3D visualization of the heart and great vessels with excellent robustness.
Resumo:
BACKGROUND: Coronary artery disease (CAD) continues to be one of the top public health burden. Perfusion cardiovascular magnetic resonance (CMR) is generally accepted to detect CAD, while data on its cost effectiveness are scarce. Therefore, the goal of the study was to compare the costs of a CMR-guided strategy vs two invasive strategies in a large CMR registry. METHODS: In 3'647 patients with suspected CAD of the EuroCMR-registry (59 centers/18 countries) costs were calculated for diagnostic examinations (CMR, X-ray coronary angiography (CXA) with/without FFR), revascularizations, and complications during a 1-year follow-up. Patients with ischemia-positive CMR underwent an invasive CXA and revascularization at the discretion of the treating physician (=CMR + CXA-strategy). In the hypothetical invasive arm, costs were calculated for an initial CXA and a FFR in vessels with ≥50 % stenoses (=CXA + FFR-strategy) and the same proportion of revascularizations and complications were applied as in the CMR + CXA-strategy. In the CXA-only strategy, costs included those for CXA and for revascularizations of all ≥50 % stenoses. To calculate the proportion of patients with ≥50 % stenoses, the stenosis-FFR relationship from the literature was used. Costs of the three strategies were determined based on a third payer perspective in 4 healthcare systems. RESULTS: Revascularizations were performed in 6.2 %, 4.5 %, and 12.9 % of all patients, patients with atypical chest pain (n = 1'786), and typical angina (n = 582), respectively; whereas complications (=all-cause death and non-fatal infarction) occurred in 1.3 %, 1.1 %, and 1.5 %, respectively. The CMR + CXA-strategy reduced costs by 14 %, 34 %, 27 %, and 24 % in the German, UK, Swiss, and US context, respectively, when compared to the CXA + FFR-strategy; and by 59 %, 52 %, 61 % and 71 %, respectively, versus the CXA-only strategy. In patients with typical angina, cost savings by CMR + CXA vs CXA + FFR were minimal in the German (2.3 %), intermediate in the US and Swiss (11.6 % and 12.8 %, respectively), and remained substantial in the UK (18.9 %) systems. Sensitivity analyses proved the robustness of results. CONCLUSIONS: A CMR + CXA-strategy for patients with suspected CAD provides substantial cost reduction compared to a hypothetical CXA + FFR-strategy in patients with low to intermediate disease prevalence. However, in the subgroup of patients with typical angina, cost savings were only minimal to moderate.
Resumo:
Aims To explore the impact of the functional severity of coronary artery stenosis on changes in myocardial oxygenation during pharmacological vasodilation, using oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) imaging and invasive fractional flow reserve (FFR). An FFR is considered a standard of reference for assessing haemodynamic relevance of coronary artery stenosis; yet, the relationship of FFR to changes in myocardial oxygenation during vasodilator stress and thus to an objective marker for ischaemia on the tissue level is not well understood. Methods and results We prospectively recruited 64 patients with suspected/known coronary artery disease undergoing invasive angiography. The FFR was performed in intermediate coronary artery stenosis. OS-CMR images were acquired using a T2*-sensitive sequence before and after adenosine-induced vasodilation, with myocardial segments matched to angiography. Very strict image quality criteria were defined to ensure the validity of results. The FFR was performed in 37 patients. Because of the strict image quality criteria, 41% of segments had to be excluded, leaving 29/64 patients for the blinded OS-CMR analysis. Coronary territories with an associated FFR of <0.80 showed a lack of increase in myocardial oxygenation [mean signal intensity (ΔSI) −0.49%; 95% confidence interval (CI) −3.78 to 2.78 vs. +7.30%; 95% CI 4.08 to 10.64; P < 0.001]. An FFR of <0.54 best predicted a complete lack of a vasodilator-induced oxygenation increase (sensitivity 71% and specificity 75%). An OS-CMR ΔSI <4.78% identified an FFR of <0.8 with a sensitivity of 86% and specificity of 92%. Conclusion An FFR of <0.80 is associated with a lack of an adenosine-inducible increase in oxygenation of the dependent coronary territory, while a complete lack of such an increase was best predicted by an FFR of <0.54. Further studies are warranted to identify clinically meaningful cut-off values for FFR measurements and to assess the utility of OS-CMR as an alternative clinical tool for assessing the functional relevance of coronary artery stenosis.
Resumo:
Background and Aim: Acute cardiac rejection is currently diagnosed by endomyocardial biopsy (EMB), but multiparametric cardiac magnetic resonance (CMR) may be a non-invasive alternative by its capacity for myocardial structure and function characterization. Our primary aim was to determine the utility of multiparametric CMR in identifying acute graft rejection in paediatric heart transplant recipients. The second aim was to compare textural features of parametric maps in cases of rejection versus those without rejection. Methods: Fifteen patients were prospectively enrolled for contrast-enhanced CMR followed by EMB and right heart catheterization. Images were acquired on a 1,5 Tesla scanner including T1 mapping (modified Look-Locker inversion recovery sequence – MOLLI) and T2 mapping (modified GraSE sequence). The extracellular volume (ECV) was calculated using pre- and post-gadolinium T1 times of blood and myocardium and the patient’s hematocrit. Markers of graft dysfunction including hemodynamic measurements from echocardiography, catheterization and CMR were collated. Patients were divided into two groups based on degree of rejection at EMB: no rejection with no change in treatment (Group A) and acute rejection requiring new therapy (Group B). Statistical analysis included student’t t test and Pearson correlation. Results: Acute rejection was diagnosed in five patients. Mean T1 values were significantly associated with acute rejection. A monotonic, increasing trend was noted in both mean and peak T1 values, with increasing degree of rejection. ECV was significantly higher in Group B. There was no difference in T2 signal between two groups. Conclusion: Multiparametric CMR serves as a noninvasive screening tool during surveillance encounters and may be used to identify those patients that may be at higher risk of rejection and therefore require further evaluation. Future and multicenter studies are necessary to confirm these results and explore whether multiparametric CMR can decrease the number of surveillance EMBs in paediatric heart transplant recipients.
Resumo:
OBJECTIVE: Contemporary free-breathing non contrast enhanced cardiovascular magnetic resonance angiography (CMRA) was qualitatively and quantitatively evaluated to ascertain the reproducibility of the method for coronary artery luminal dimension measurements. SUBJECTS AND METHODS: Twenty-two healthy volunteers (mean age 32 +/- 7 years, 12 males) without coronary artery disease were imaged at 2 centers (1 each in Europe and North America) using navigator-gated and corrected SSFP CMRA on a commercial whole body 1.5T System. Repeat images of right (RCA, n = 21), left anterior descending (LAD, n = 14) and left circumflex (LCX, n = 14) coronary arteries were obtained in separate sessions using identical scan protocol and imaging parameters. True visible vessel length, signal-to-noise (SNR), contrast-to-noise ratios (CNR) and the average luminal diameter over the first 4 cm of the vessel were measured. Intra-observer, inter-observer and inter-scan reproducibility of coronary artery luminal diameter were determined using Pearson's correlation, Bland-Altman analysis and intraclass correlation coefficients (ICC). RESULTS: CNR, SNR and the mean length of the RCA, LAD and LCX imaged for original and repeat scans were not significantly different (all p > 0.30). There was a high degree of intra-observer, inter-observer and inter-scan agreements for RCA, LAD and LCX luminal diameter respectively on Bland-Altman and ICC analysis (ICC's for RCA: 0.98. 0.98 and 0.86; LAD: 0.89, 0.89 and 0.63; LCX: 0.95, 0.94 and 0.79). CONCLUSION: In a 2-center study, we demonstrate that free-breathing 3D SSFP CMRA can visualize long continuous segments of coronary vessels with highly reproducible measurements of luminal diameter.
Resumo:
The vascular properties of large vessels in the obese have not been adequately studied. We used cardiovascular magnetic resonance imaging to quantify the cross-sectional area and elastic properties of the ascending thoracic and abdominal aorta in 21 clinically healthy obese young adult men and 25 men who were age-matched lean controls. Obese subjects had greater maximal cross-sectional area of the ascending thoracic aorta (984 +/- 252 vs 786 +/- 109 mm(2), p <0.01) and of the abdominal aorta (415 +/- 71 vs 374 +/- 51 mm(2), p <0.05). When indexed for height the differences persisted, but when indexed for body surface area, a significant difference between groups was found only for the maximal abdominal aortic cross-sectional area. The obese subjects also had decreased abdominal aortic elasticity, characterized by 24% lower compliance (0.0017 +/- 0.0004 vs 0.0021 +/- 0.0005 mm(2)/kPa/mm, p <0.01), 22% higher stiffness index beta (6.0 +/- 1.5 vs 4.9 +/- 0.7, p <0.005), and 41% greater pressure-strain elastic modulus (72 +/- 25 vs 51 +/- 9, p <0.005). At the ascending thoracic aorta, only the pressure-strain elastic modulus was different between obese and lean subjects (85 +/- 42 vs 65 +/- 26 kPa, respectively; p <0.05), corresponding to a 31% difference-but arterial compliance and stiffness index were not significantly different between groups. In clinically healthy young adult obese men, obesity is associated with increased cross-sectional aortic area and decreased aortic elasticity.
Resumo:
Atherosclerosis is a chronic cardiovascular disease that involves the thicken¬ing of the artery walls as well as the formation of plaques (lesions) causing the narrowing of the lumens, in vessels such as the aorta, the coronary and the carotid arteries. Magnetic resonance imaging (MRI) is a promising modality for the assessment of atherosclerosis, as it is a non-invasive and patient-friendly procedure that does not use ionizing radiation. MRI offers high soft tissue con¬trast already without the need of intravenous contrast media; while modifica¬tion of the MR pulse sequences allows for further adjustment of the contrast for specific diagnostic needs. As such, MRI can create angiographic images of the vessel lumens to assess stenoses at the late stage of the disease, as well as blood flow-suppressed images for the early investigation of the vessel wall and the characterization of the atherosclerotic plaques. However, despite the great technical progress that occurred over the past two decades, MRI is intrinsically a low sensitive technique and some limitations still exist in terms of accuracy and performance. A major challenge for coronary artery imaging is respiratory motion. State- of-the-art diaphragmatic navigators rely on an indirect measure of motion, per¬form a ID correction, and have long and unpredictable scan time. In response, self-navigation (SM) strategies have recently been introduced that offer 100% scan efficiency and increased ease of use. SN detects respiratory motion di¬rectly from the image data obtained at the level of the heart, and retrospectively corrects the same data before final image reconstruction. Thus, SN holds po-tential for multi-dimensional motion compensation. To this regard, this thesis presents novel SN methods that estimate 2D and 3D motion parameters from aliased sub-images that are obtained from the same raw data composing the final image. Combination of all corrected sub-images produces a final image with reduced motion artifacts for the visualization of the coronaries. The first study (section 2.2, 2D Self-Navigation with Compressed Sensing) consists of a method for 2D translational motion compensation. Here, the use of com- pressed sensing (CS) reconstruction is proposed and investigated to support motion detection by reducing aliasing artifacts. In healthy human subjects, CS demonstrated an improvement in motion detection accuracy with simula¬tions on in vivo data, while improved coronary artery visualization was demon¬strated on in vivo free-breathing acquisitions. However, the motion of the heart induced by respiration has been shown to occur in three dimensions and to be more complex than a simple translation. Therefore, the second study (section 2.3,3D Self-Navigation) consists of a method for 3D affine motion correction rather than 2D only. Here, different techniques were adopted to reduce background signal contribution in respiratory motion tracking, as this can be adversely affected by the static tissue that surrounds the heart. The proposed method demonstrated to improve conspicuity and vi¬sualization of coronary arteries in healthy and cardiovascular disease patient cohorts in comparison to a conventional ID SN method. In the third study (section 2.4, 3D Self-Navigation with Compressed Sensing), the same tracking methods were used to obtain sub-images sorted according to the respiratory position. Then, instead of motion correction, a compressed sensing reconstruction was performed on all sorted sub-image data. This process ex¬ploits the consistency of the sorted data to reduce aliasing artifacts such that the sub-image corresponding to the end-expiratory phase can directly be used to visualize the coronaries. In a healthy volunteer cohort, this strategy improved conspicuity and visualization of the coronary arteries when compared to a con¬ventional ID SN method. For the visualization of the vessel wall and atherosclerotic plaques, the state- of-the-art dual inversion recovery (DIR) technique is able to suppress the signal coming from flowing blood and provide positive wall-lumen contrast. How¬ever, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. In response and as a fourth study of this thesis (chapter 3, Vessel Wall MRI of the Carotid Arteries), a phase-sensitive DIR method has been implemented and tested in the carotid arteries of a healthy volunteer cohort. By exploiting the phase information of images acquired after DIR, the proposed phase-sensitive method enhances wall-lumen contrast while widens the window of opportunity for image acquisition. As a result, a 3-fold increase in volumetric coverage is obtained at no extra cost in scanning time, while image quality is improved. In conclusion, this thesis presented novel methods to address some of the main challenges for MRI of atherosclerosis: the suppression of motion and flow artifacts for improved visualization of vessel lumens, walls and plaques. Such methods showed to significantly improve image quality in human healthy sub¬jects, as well as scan efficiency and ease-of-use of MRI. Extensive validation is now warranted in patient populations to ascertain their diagnostic perfor¬mance. Eventually, these methods may bring the use of atherosclerosis MRI closer to the clinical practice. Résumé L'athérosclérose est une maladie cardiovasculaire chronique qui implique le épaississement de la paroi des artères, ainsi que la formation de plaques (lé¬sions) provoquant le rétrécissement des lumières, dans des vaisseaux tels que l'aorte, les coronaires et les artères carotides. L'imagerie par résonance magné¬tique (IRM) est une modalité prometteuse pour l'évaluation de l'athérosclérose, car il s'agit d'une procédure non-invasive et conviviale pour les patients, qui n'utilise pas des rayonnements ionisants. L'IRM offre un contraste des tissus mous très élevé sans avoir besoin de médias de contraste intraveineux, tan¬dis que la modification des séquences d'impulsions de RM permet en outre le réglage du contraste pour des besoins diagnostiques spécifiques. À ce titre, l'IRM peut créer des images angiographiques des lumières des vaisseaux pour évaluer les sténoses à la fin du stade de la maladie, ainsi que des images avec suppression du flux sanguin pour une première enquête des parois des vais¬seaux et une caractérisation des plaques d'athérosclérose. Cependant, malgré les grands progrès techniques qui ont eu lieu au cours des deux dernières dé¬cennies, l'IRM est une technique peu sensible et certaines limitations existent encore en termes de précision et de performance. Un des principaux défis pour l'imagerie de l'artère coronaire est le mou¬vement respiratoire. Les navigateurs diaphragmatiques de pointe comptent sur une mesure indirecte de mouvement, effectuent une correction 1D, et ont un temps d'acquisition long et imprévisible. En réponse, les stratégies d'auto- navigation (self-navigation: SN) ont été introduites récemment et offrent 100% d'efficacité d'acquisition et une meilleure facilité d'utilisation. Les SN détectent le mouvement respiratoire directement à partir des données brutes de l'image obtenue au niveau du coeur, et rétrospectivement corrigent ces mêmes données avant la reconstruction finale de l'image. Ainsi, les SN détiennent un poten¬tiel pour une compensation multidimensionnelle du mouvement. A cet égard, cette thèse présente de nouvelles méthodes SN qui estiment les paramètres de mouvement 2D et 3D à partir de sous-images qui sont obtenues à partir des mêmes données brutes qui composent l'image finale. La combinaison de toutes les sous-images corrigées produit une image finale pour la visualisation des coronaires ou les artefacts du mouvement sont réduits. La première étude (section 2.2,2D Self-Navigation with Compressed Sensing) traite d'une méthode pour une compensation 2D de mouvement de translation. Ici, on étudie l'utilisation de la reconstruction d'acquisition comprimée (compressed sensing: CS) pour soutenir la détection de mouvement en réduisant les artefacts de sous-échantillonnage. Chez des sujets humains sains, CS a démontré une amélioration de la précision de la détection de mouvement avec des simula¬tions sur des données in vivo, tandis que la visualisation de l'artère coronaire sur des acquisitions de respiration libre in vivo a aussi été améliorée. Pourtant, le mouvement du coeur induite par la respiration se produit en trois dimensions et il est plus complexe qu'un simple déplacement. Par conséquent, la deuxième étude (section 2.3, 3D Self-Navigation) traite d'une méthode de cor¬rection du mouvement 3D plutôt que 2D uniquement. Ici, différentes tech¬niques ont été adoptées pour réduire la contribution du signal du fond dans le suivi de mouvement respiratoire, qui peut être influencé négativement par le tissu statique qui entoure le coeur. La méthode proposée a démontré une amélioration, par rapport à la procédure classique SN de correction 1D, de la visualisation des artères coronaires dans le groupe de sujets sains et des pa¬tients avec maladies cardio-vasculaires. Dans la troisième étude (section 2.4,3D Self-Navigation with Compressed Sensing), les mêmes méthodes de suivi ont été utilisées pour obtenir des sous-images triées selon la position respiratoire. Au lieu de la correction du mouvement, une reconstruction de CS a été réalisée sur toutes les sous-images triées. Cette procédure exploite la cohérence des données pour réduire les artefacts de sous- échantillonnage de telle sorte que la sous-image correspondant à la phase de fin d'expiration peut directement être utilisée pour visualiser les coronaires. Dans un échantillon de volontaires en bonne santé, cette stratégie a amélioré la netteté et la visualisation des artères coronaires par rapport à une méthode classique SN ID. Pour la visualisation des parois des vaisseaux et de plaques d'athérosclérose, la technique de pointe avec double récupération d'inversion (DIR) est capa¬ble de supprimer le signal provenant du sang et de fournir un contraste posi¬tif entre la paroi et la lumière. Pourtant, il est difficile d'obtenir un contraste optimal car cela est soumis à la variabilité du rythme cardiaque. Par ailleurs, l'imagerie DIR est inefficace du point de vue du temps et les acquisitions "mul- tislice" peuvent conduire à des temps de scan prolongés. En réponse à ce prob¬lème et comme quatrième étude de cette thèse (chapitre 3, Vessel Wall MRI of the Carotid Arteries), une méthode de DIR phase-sensitive a été implémenté et testé
Resumo:
L'imagerie par résonance magnétique (IRM) peut fournir aux cardiologues des informations diagnostiques importantes sur l'état de la maladie de l'artère coronarienne dans les patients. Le défi majeur pour l'IRM cardiaque est de gérer toutes les sources de mouvement qui peuvent affecter la qualité des images en réduisant l'information diagnostique. Cette thèse a donc comme but de développer des nouvelles techniques d'acquisitions des images IRM, en changeant les techniques de compensation du mouvement, pour en augmenter l'efficacité, la flexibilité, la robustesse et pour obtenir plus d'information sur le tissu et plus d'information temporelle. Les techniques proposées favorisent donc l'avancement de l'imagerie des coronaires dans une direction plus maniable et multi-usage qui peut facilement être transférée dans l'environnement clinique. La première partie de la thèse s'est concentrée sur l'étude du mouvement des artères coronariennes sur des patients en utilisant la techniques d'imagerie standard (rayons x), pour mesurer la précision avec laquelle les artères coronariennes retournent dans la même position battement après battement (repositionnement des coronaires). Nous avons découvert qu'il y a des intervalles dans le cycle cardiaque, tôt dans la systole et à moitié de la diastole, où le repositionnement des coronaires est au minimum. En réponse nous avons développé une nouvelle séquence d'acquisition (T2-post) capable d'acquérir les données aussi tôt dans la systole. Cette séquence a été testée sur des volontaires sains et on a pu constater que la qualité de visualisation des artère coronariennes est égale à celle obtenue avec les techniques standard. De plus, le rapport signal sur bruit fourni par la séquence d'acquisition proposée est supérieur à celui obtenu avec les techniques d'imagerie standard. La deuxième partie de la thèse a exploré un paradigme d'acquisition des images cardiaques complètement nouveau pour l'imagerie du coeur entier. La technique proposée dans ce travail acquiert les données sans arrêt (free-running) au lieu d'être synchronisée avec le mouvement cardiaque. De cette façon, l'efficacité de la séquence d'acquisition est augmentée de manière significative et les images produites représentent le coeur entier dans toutes les phases cardiaques (quatre dimensions, 4D). Par ailleurs, l'auto-navigation de la respiration permet d'effectuer cette acquisition en respiration libre. Cette technologie rend possible de visualiser et évaluer l'anatomie du coeur et de ses vaisseaux ainsi que la fonction cardiaque en quatre dimensions et avec une très haute résolution spatiale et temporelle, sans la nécessité d'injecter un moyen de contraste. Le pas essentiel qui a permis le développement de cette technique est l'utilisation d'une trajectoire d'acquisition radiale 3D basée sur l'angle d'or. Avec cette trajectoire, il est possible d'acquérir continûment les données d'espace k, puis de réordonner les données et choisir les paramètres temporel des images 4D a posteriori. L'acquisition 4D a été aussi couplée avec un algorithme de reconstructions itératif (compressed sensing) qui permet d'augmenter la résolution temporelle tout en augmentant la qualité des images. Grâce aux images 4D, il est possible maintenant de visualiser les artères coronariennes entières dans chaque phase du cycle cardiaque et, avec les mêmes données, de visualiser et mesurer la fonction cardiaque. La qualité des artères coronariennes dans les images 4D est la même que dans les images obtenues avec une acquisition 3D standard, acquise en diastole Par ailleurs, les valeurs de fonction cardiaque mesurées au moyen des images 4D concorde avec les valeurs obtenues avec les images 2D standard. Finalement, dans la dernière partie de la thèse une technique d'acquisition a temps d'écho ultra-court (UTE) a été développée pour la visualisation in vivo des calcifications des artères coronariennes. Des études récentes ont démontré que les acquisitions UTE permettent de visualiser les calcifications dans des plaques athérosclérotiques ex vivo. Cepandent le mouvement du coeur a entravé jusqu'à maintenant l'utilisation des techniques UTE in vivo. Pour résoudre ce problème nous avons développé une séquence d'acquisition UTE avec trajectoire radiale 3D et l'avons testée sur des volontaires. La technique proposée utilise une auto-navigation 3D pour corriger le mouvement respiratoire et est synchronisée avec l'ECG. Trois échos sont acquis pour extraire le signal de la calcification avec des composants au T2 très court tout en permettant de séparer le signal de la graisse depuis le signal de l'eau. Les résultats sont encore préliminaires mais on peut affirmer que la technique développé peut potentiellement montrer les calcifications des artères coronariennes in vivo. En conclusion, ce travail de thèse présente trois nouvelles techniques pour l'IRM du coeur entier capables d'améliorer la visualisation et la caractérisation de la maladie athérosclérotique des coronaires. Ces techniques fournissent des informations anatomiques et fonctionnelles en quatre dimensions et des informations sur la composition du tissu auparavant indisponibles. CORONARY artery magnetic resonance imaging (MRI) has the potential to provide the cardiologist with relevant diagnostic information relative to coronary artery disease of patients. The major challenge of cardiac MRI, though, is dealing with all sources of motions that can corrupt the images affecting the diagnostic information provided. The current thesis, thus, focused on the development of new MRI techniques that change the standard approach to cardiac motion compensation in order to increase the efficiency of cardioavscular MRI, to provide more flexibility and robustness, new temporal information and new tissue information. The proposed approaches help in advancing coronary magnetic resonance angiography (MRA) in the direction of an easy-to-use and multipurpose tool that can be translated to the clinical environment. The first part of the thesis focused on the study of coronary artery motion through gold standard imaging techniques (x-ray angiography) in patients, in order to measure the precision with which the coronary arteries assume the same position beat after beat (coronary artery repositioning). We learned that intervals with minimal coronary artery repositioning occur in peak systole and in mid diastole and we responded with a new pulse sequence (T2~post) that is able to provide peak-systolic imaging. Such a sequence was tested in healthy volunteers and, from the image quality comparison, we learned that the proposed approach provides coronary artery visualization and contrast-to-noise ratio (CNR) comparable with the standard acquisition approach, but with increased signal-to-noise ratio (SNR). The second part of the thesis explored a completely new paradigm for whole- heart cardiovascular MRI. The proposed techniques acquires the data continuously (free-running), instead of being triggered, thus increasing the efficiency of the acquisition and providing four dimensional images of the whole heart, while respiratory self navigation allows for the scan to be performed in free breathing. This enabling technology allows for anatomical and functional evaluation in four dimensions, with high spatial and temporal resolution and without the need for contrast agent injection. The enabling step is the use of a golden-angle based 3D radial trajectory, which allows for a continuous sampling of the k-space and a retrospective selection of the timing parameters of the reconstructed dataset. The free-running 4D acquisition was then combined with a compressed sensing reconstruction algorithm that further increases the temporal resolution of the 4D dataset, while at the same time increasing the overall image quality by removing undersampling artifacts. The obtained 4D images provide visualization of the whole coronary artery tree in each phases of the cardiac cycle and, at the same time, allow for the assessment of the cardiac function with a single free- breathing scan. The quality of the coronary arteries provided by the frames of the free-running 4D acquisition is in line with the one obtained with the standard ECG-triggered one, and the cardiac function evaluation matched the one measured with gold-standard stack of 2D cine approaches. Finally, the last part of the thesis focused on the development of ultrashort echo time (UTE) acquisition scheme for in vivo detection of calcification in the coronary arteries. Recent studies showed that UTE imaging allows for the coronary artery plaque calcification ex vivo, since it is able to detect the short T2 components of the calcification. The heart motion, though, prevented this technique from being applied in vivo. An ECG-triggered self-navigated 3D radial triple- echo UTE acquisition has then been developed and tested in healthy volunteers. The proposed sequence combines a 3D self-navigation approach with a 3D radial UTE acquisition enabling data collection during free breathing. Three echoes are simultaneously acquired to extract the short T2 components of the calcification while a water and fat separation technique allows for proper visualization of the coronary arteries. Even though the results are still preliminary, the proposed sequence showed great potential for the in vivo visualization of coronary artery calcification. In conclusion, the thesis presents three novel MRI approaches aimed at improved characterization and assessment of atherosclerotic coronary artery disease. These approaches provide new anatomical and functional information in four dimensions, and support tissue characterization for coronary artery plaques.