980 resultados para CHROMOSOME-ABNORMALITIES
Resumo:
Within the last few years, several reports have revealed that cell transplantation can be an effective way to replace lost neurons in the central nervous system (CNS) of patients affected with neurodegenerative diseases. Concerning the retina, the concept that newborn photoreceptors can integrate the retina and restore some visual functions was univocally demonstrated recently in the mouse eye (MacLaren et al. 2006) and remains to be achieved in human. These results pave the way to a standard approach in regenerative medicine aiming to replace lost photoreceptors. With the discovery of stem cells a great hope has appeared towards elaborating protocols to generate adequate cells to restore visual function in different retinal degeneration processes. Retinal stem cells (RSCs) are good candidates to repair the retina and are present throughout the retina development, including adulthood. However, neonatal mouse RSCs derived from the radial glia population have a different potential to proliferate and differentiate in comparison to adult RSCs. Moreover, we observed that adult mouse RSCs, depending on the culture conditions, have a marked tendency to transform, whereas neonatal RSCs show subtle chromosome abnormalities only after extensive expansion. These characteristics should help to identify the optimal cell source and culture conditions for cell transplantation studies. These results will be discussed in light of other studies using RSCs as well as embryonic stem cells. Another important factor to consider is the host environment, which plays a crucial role for cell integration and which was poorly studied in the normal and the diseased retina. Nonetheless, important results were recently generated to reconsider cell transplantation strategy. Perspectives to enhance cell integration by manipulating the environment will also be presented.
Resumo:
A new cell line, PC-0199-BR, was established from embryonated eggs of the mosquito Psorophora confinnis. To date (September 2000) it has had 62 continuous passages. This is the first report of a cell line of mosquitoes belonging to the genus Psorophora. Cell growth initially was achieved in the MM/VP12 medium, supplemented with 20% fetal bovine serum; however, the subcultures were later adapted to Grace's medium with 10% fetal bovine serum. Cell morphology in the primary cultures was heterogeneous; but later in the established cell line, the predominant cell type was epithelioid. Cultured cells were predominantly diploid (2n=6); however, chromosome abnormalities were observed in a small proportion of the cells in later passages. C and G band patterns were also determined in the karyotype. The cell line isozyme profiles coincided with pupae and adult samples of the species taken from the same colony. A preliminary arbovirus susceptibility study for the cell line was undertaken. No evidence was observed of contamination of the cell line with bacteria, fungi or mycoplasma.
Resumo:
This study evaluated the prenatal diagnosis of Turner syndrome by ultrasound examination in an unselected population from all over Europe. Data from 19 congenital malformation registries from 11 European countries were analyzed. Turner syndrome was diagnosed in 125 cases (7.2%) in a total of 1,738 chromosome abnormalities. Sixty-seven percent of cases were detected prenatally by ultrasound examination due to the presence of congenital defects. The most frequent anomalies were cystic hygroma (59.5%) and hydrops fetalis (19%). The most frequent karyotype was 45,X (81.6%) followed by different types of mosaicism (16.8%). Significant differences in congenital defects (P = 0.0003) were observed between 45,X karyotypes and 45,X mosaicism cases. Prenatal counseling for 45,X mosaicism should take into account the expectation of a milder phenotype. In 78.6% of cases diagnosed by ultrasound examination due to congenital anomalies, the pregnancy was terminated. Prenatal detection of Turner syndrome by ultrasound examination was high in this unselected population.
Resumo:
Cytogenic analysis of leukemic cells has proven to be a mandatory part of the diagnosis of malignant hemopathies. Recurring clonal cytogenetic abnormalities may be divided into those exclusively associated with myeloid disorders, those uniquely observed in lymphoid diseases, and those detected in both myeloid and lymphoid hemopathies. Several of the common defects are characteristic of specific FAB types or subtypes and are associated with specific clinico pathologic syndromes and clinical complications. Cytogenetic abnormalities have served to define relatively homogeneous subsets of malignant hemopathies which are not evident from morphological and other available markers. Cytogenetic findings have been demonstrated to be powerful indicators in predicting clinical course and outcome in patients and in guiding their management. Given the significant progress made in the treatment of malignant hemopathies, it is very important to identify parameters which may be used to predict whether patients will respond favorably to standard therapies or if they are unlikely to do so and require alternative strategies, such as bone marrow transplantation. Cytogenetic studies have also provided important insights into the understanding of malignant transformation processes. In a number of recurring chromosome translocations characteristic of leukemias and lymphomas the genes that are located at the breakpoints have been identified. Molecular analysis has revealed that alteration in expression of these genes or in the properties of the encoded proteins resulting from the rearrangements plays an integral part in malignant transformation. Studies of clonality have suggested that several chromosome abnormalities may arise in pluripotent hemopoietic stem cells, whereas others may originate in cells of more restricted lineage. The author focuses first on the implications of the karyotype in the diagnosis and the prognosis of myeloproliferative syndromes, acute leukemias and myelodysplastic syndromes, then on the interest of describing new clinical-cytogenetic associations. Finally, some of the recent results obtained in a cytogenetic study of myelodysplastic syndromes are discussed.
Resumo:
Fragile X-syndrome is caused by a mutation in chromosome X. It is one of the most frequent causes of learning disability. The most frequent manifestations of fragile X-syndrome are learning disability, different orofacial morphological alterations and an increase in testicle size. The disease is associated with cardiac malformations, joint hyperextension and behavioural alterations. We present two male patients aged 17 and 10 years, treated in our Service due to severe gingivitis. Both showed the typical facial and dental characteristics of the syndrome. In addition, we detected the presence of root anomalies such as taurodontism and root bifurcation, which had not been associated with fragile X-syndrome in the literature. In some cases these root malformations have been associated with other sex-linked congenital syndromes, though in none of the studies published in the literature have they been related with fragile X-syndrome. This syndrome is relevant due to its high prevalence, the presentation of certain oral and facial characteristics that can facilitate the diagnosis, and the few cases published to date
Resumo:
BACKGROUND: Defining the molecular genomic basis of the likelihood of developing depressive disorder is a considerable challenge. We previously associated rare, exonic deletion copy number variants (CNV) with recurrent depressive disorder (RDD). Sex chromosome abnormalities also have been observed to co-occur with RDD. METHODS: In this reanalysis of our RDD dataset (N = 3106 cases; 459 screened control samples and 2699 population control samples), we further investigated the role of larger CNVs and chromosomal abnormalities in RDD and performed association analyses with clinical data derived from this dataset. RESULTS: We found an enrichment of Turner's syndrome among cases of depression compared with the frequency observed in a large population sample (N = 34,910) of live-born infants collected in Denmark (two-sided p = .023, odds ratio = 7.76 [95% confidence interval = 1.79-33.6]), a case of diploid/triploid mosaicism, and several cases of uniparental isodisomy. In contrast to our previous analysis, large deletion CNVs were no more frequent in cases than control samples, although deletion CNVs in cases contained more genes than control samples (two-sided p = .0002). CONCLUSIONS: After statistical correction for multiple comparisons, our data do not support a substantial role for CNVs in RDD, although (as has been observed in similar samples) occasional cases may harbor large variants with etiological significance. Genetic pleiotropy and sample heterogeneity suggest that very large sample sizes are required to study conclusively the role of genetic variation in mood disorders.
Resumo:
Introducción: la hibridación genómica comparativa en una técnica que permite la exploración de las anormalidades cromosómicas. Su utilidad en la aproximación de los pacientes con retraso global del desarrollo o fenotipo dismórfico, sin embargo, no ha sido explorada mediante una revisión sistemática de la literatura. Metodología: realizó una revisión sistemática de la literatura. Se incluyeron estudios controlados, cuasi-experimentales, de cohortes, de casos y controles, transversales y descriptivos publicados en idiomas inglés y español entre los años 2000 y 2013. Se realizó un análisis de la evidencia con un enfoque cualitativo y cuantitativo. Se realizó un análisis del riesgo de sesgo de los estudios incluidos. Resultados: se incluyeron 4 estudios que cumplieron con los criterios de inclusión. La prevalencia de alteraciones cromosómicas en los niños con retraso global del desarrollo fue de entre el 6 y 13%. El uso de la técnica permitió identificar alteraciones que no fueron detectadas mediante el cariotipo. Conclusiones: la hibridación genómica comparativa es una técnica útil en la aproximación diagnóstica de los niños con retraso global del desarrollo y del fenotipo dismórfico y permite una mayor detección de alteraciones comparada con el cariotipo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: em decorrência dos questionamentos sobre o efeito deletério das radiações emitidas pelo campo eletromagnético (CEM) dos tipos ELF (extremely low frequency) e VLF (very low frequency) transmitidas pelos monitores de vídeo dos computadores (CRT), foi avaliada a freqüência de anomalias cromossômicas estruturais e a cinética do ciclo celular em indivíduos expostos por seu trabalho à radiação dos CRT. MÉTODOS: A pesquisa de aberrações cromossômicas foi realizada em 2.000 metáfases de primeira divisão celular obtidas de culturas de 48h de linfócitos de sangue venoso periférico de dez indivíduos expostos ao CRT (grupo E) e de dez controles (grupo C). A cinética do ciclo celular foi pesquisada pelos índices mitótico (IM) e de proliferação celular (IPC). RESULTADOS: A análise estatística evidenciou freqüências significativamente maiores de metáfases com anomalias cromossômicas (E=5,9%; C=3,7%) e anomalias/célula (E=0,066±0,026; C=0,040±0,026) nos indivíduos expostos aos CRTs. As alterações citogenéticas mais comuns foram as quebras cromatídicas, com freqüência de 0,034±0,016 no grupo E e de 0,016±0,015 no grupo C. As freqüências de IM e IPC não apresentaram diferenças significantes entre os grupos avaliados. CONCLUSÕES: Os resultados sugerem um efeito genotóxico do CEM emitido pelos CRTs devido à freqüência mais elevada de quebras cromatídicas, enfatizando a necessidade de haver um número maior de estudos com diferentes técnicas que vise a investigar a ação do CEM sobre o material genético.
Resumo:
Chromosome analysis of short-term culture of a basal cell carcinoma showed five clonal chromosome abnormalities, t(9;14)(q12 or q13;p11), del(1)(q23 or q25), trisomy 5, trisomy 7, and monosomy X. In addition, several nonclonal structural and numerical changes were seen in the tumor cells.
Resumo:
Chromosome analysis was performed on samples from 20 Brazilian patients with breast cancer. All the samples were from untreated patients who presented the clinical symptoms for months or years before surgical intervention. Six cases showed axillary lymph node metastases. Clonal chromosome abnormalities were detected in all cases. The numerical alterations most frequently observed involved the loss of chromosomes X, 19, 20, and 22 followed by gain of chromosomes 9 and 8. Among the structural anomalies observed, there was preferential involvement of chromosomes 11, 6, 1, 7, 3, and 12, supporting previous reports that these chromosomes may harbour genes of importance in the development of breast tumors. Two cases with a family history of breast cancer had in common total or partial trisomy 1.
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Chronic myelogenous leukemia (CML) is a common myeloproliferative disease that is characterized by the clonal expansion of marrow stem cells, and is associated with the Philadelphia chromosome. As the disease progresses, additional chromosome abnormalities may arise. The prognostic impact of secondary chromosomal abnormalities in CML is complex, heterogeneous, and sometimes related to previous treatment. Here, we describe a CML patient in lymphoid blast crisis associated with a new chromosomal abnormality identified, dic(7;12)(p12.21;p12.2) and i(12)(q10) using classical cytogenetics and spectral karyotype analysis. To the best of our knowledge, this is the first report of t(7;12)(p11.1;q11.1) and i(12)(q10) in a CML patient with lymphoid evolution.
Resumo:
The development of a completely annotated sheep genome sequence is a key need for understanding the phylogenetic relationships and genetic diversity among the many different sheep breeds worldwide and for identifying genes controlling economically and physiologically important traits. The ovine genome sequence assembly will be crucial for developing optimized breeding programs based on highly productive, healthy sheep phenotypes that are adapted to modern breeding and production conditions. Scientists and breeders around the globe have been contributing to this goal by generating genomic and cDNA libraries, performing genome-wide and trait-associated analyses of polymorphism, expression analysis, genome sequencing, and by developing virtual and physical comparative maps. The International Sheep Genomics Consortium (ISGC), an informal network of sheep genomics researchers, is playing a major role in coordinating many of these activities. In addition to serving as an essential tool for monitoring chromosome abnormalities in specific sheep populations, ovine molecular cytogenetics provides physical anchors which link and order genome regions, such as sequence contigs, genes and polymorphic DNA markers to ovine chromosomes. Likewise, molecular cytogenetics can contribute to the process of defining evolutionary breakpoints between related species. The selective expansion of the sheep cytogenetic map, using loci to connect maps and identify chromosome bands, can substantially contribute to improving the quality of the annotated sheep genome sequence and will also accelerate its assembly. Furthermore, identifying major morphological chromosome anomalies and micro-rearrangements, such as gene duplications or deletions, that might occur between different sheep breeds and other Ovis species will also be important to understand the diversity of sheep chromosome structure and its implications for cross-breeding. To date, 566 loci have been assigned to specific chromosome regions in sheep and the new cytogenetic map is presented as part of this review. This review will also summarize the current cytogenomic status of the sheep genome, describe current activities in the sheep cytogenomics research sector, and will discuss the cytogenomics data in context with other major sheep genomics projects.