974 resultados para CHIRAL-SYMMETRY-BREAKING
Resumo:
We introduce a covariant approach in Minkowski space for the description of quarks and mesons that exhibits both chiral-symmetry breaking and confinement. In a simple model for the interquark interaction, the quark mass function is obtained and used in the calculation of the pion form factor. We study the effects of the mass function and the different quark pole contributions on the pion form factor.
Resumo:
It is quite difficult to obtain non-trivial chiral symmetry breaking solutions for the quark gap equation in the presence of dynamically generated gluon masses. An effective confining propagator has recently been proposed by Cornwall in order to solve this problem. We study phenomenological consequences of this approach, showing its compatibility with the experimental data. We argue that this confining propagator should be restricted to a small region of momenta, leading to effective four-fermion interactions at low energy. © 2013 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We propose a model for chiral polymerisation and investigate its symmetric and asymmetric solutions. The model has a source species which decays into left- and right-handed types of monomer, each of which can polymerise to form homochiral chains; these chains are susceptible to `poisoning' by the opposite handed monomer. Homochiral polymers are assumed to influence the proportion of each type of monomer formed from the precursor. We show that for certain parameter values a positive feedback mechanism makes the symmetric steady-state solution unstable. The kinetics of polymer formation are then analysed in the case where the system starts from zero concentrations of monomers and chains. We show that following a long induction time, extremely large concentrations of polymers are formed for a short time, during this time an asymmetry introduced into the system by a random external perturbation may be massively amplified. The system then approaches one of the steady-state solutions described above.
Resumo:
Understanding the interplay between intrinsic molecular chirality and chirality of the bonding footprint is crucial in exploiting enantioselectivity at surfaces. As such, achiral glycine and chiral alanine are the most obvious candidates if one is to study this interplay on different surfaces. Here, we have investigated the adsorption of glycine on Cu{311} using reflection-absorption infrared spectroscopy, low-energy electron diffraction, temperature-programmed desorption and first-principles density-functional theory. This combination of techniques has allowed us to accurately identify the molecular conformations present under different conditions, and discuss the overlayer structure in the context of the possible bonding footprints. We have observed coverage-dependent local symmetry breaking, with three-point bonded glycinate moieties forming an achiral arrangement at low coverages, and chirality developing with the presence of two-point bonded moieties at high coverages. Comparison with previous work on the self-assembly of simple amino acids on Cu{311} and the structurally-similar Cu{110} surface has allowed us to rationalise the different conditions necessary for the formation of ordered chiral overlayers.
Resumo:
Chiral-symmetry restoration is usually discussed in the context of quark matter, a system of deconfined quarks. However, many systems like stable nuclei and neutron stars have quarks confined within nucleons. In the present paper we use a Fermi sea of three-quark clusters instead of a Fermi sea of deconfined quarks to investigate the in-medium quark condensate. We find that an enhancement of the chiral breaking in clustered matter as claimed in the literature is not a consequence of the clustering but rather dependent on the microscopic model dynamics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Reasoning from two basic principles of molecular physics, P invariance of electromagnetic interaction and the second law of thermodynamics, one would conclude that mirror symmetry retained in the world of chiral molecules. This inference is fully consistent with what is observed in inorganic nature. However, in the bioorganic world, the reverse is true. Mirror symmetry there is definitely broken. Is it possible to account for this phenomenon without going beyond conventional concepts of the kinetics of enantioselective processes? This study is an attempt to survey all existing hypotheses containing this phenomenon.
Resumo:
We analyze aspects of symmetry breaking for Moyal spacetimes within a quantization scheme which preserves the twisted Poincare´ symmetry. Towards this purpose, we develop the Lehmann-Symanzik- Zimmermann (LSZ) approach for Moyal spacetimes. The latter gives a formula for scattering amplitudes on these spacetimes which can be obtained from the corresponding ones on the commutative spacetime. This formula applies in the presence of spontaneous breakdown of symmetries as well. We also derive Goldstone’s theorem on Moyal spacetime. The formalism developed here can be directly applied to the twisted standard model.
Resumo:
The control of shapes of nanocrystals is crucial for using them as building blocks for various applications. In this paper, we present a critical overview of the issues involved in shape-controlled synthesis of nanostructures. In particular, we focus on the mechanisms by which anisotropic structures of high-symmetry materials (fcc crystals, for instance) could be realized. Such structures require a symmetry-breaking mechanism to be operative that typically leads to selection of one of the facets/directions for growth over all the other symmetry-equivalent crystallographic facets. We show how this selection could arise for the growth of one-dimensional structures leading to ultrafine metal nanowires and for the case of two-dimensional nanostructures where the layer-by-layer growth takes place at low driving forces leading to plate-shaped structures. We illustrate morphology diagrams to predict the formation of two-dimensional structures during wet chemical synthesis. We show the generality of the method by extending it to predict the growth of plate-shaped inorganics produced by a precipitation reaction. Finally, we present the growth of crystals under high driving forces that can lead to the formation of porous structures with large surface areas.
Resumo:
Displaced squeezed states are proposed as variational ground states for phonons (Bose fields) coupled to two-level systems (spin systems). We have investigated the zero-temperature phase diagram for the localization-delocalization transition of a tunneling particle interacting with an Ohmic heat bath. Our results are compared with known existing approximate treatments. A modified phase diagram using the displaced squeezed state is presented.
Resumo:
We examine the symmetry-breaking transitions in equilibrium shapes of coherent precipitates in two-dimensional (2-D) systems under a plane-strain condition with the principal misfit strain components epsilon(xx)*. and epsilon(yy)*. For systems with cubic elastic moduli, we first show all the shape transitions associated with different values of t = epsilon(yy)*/epsilon(xx)*. We also characterize each of these transitions, by studying its dependence on elastic anisotropy and inhomogeneity. For systems with dilatational misfit (t = 1) and those with pure shear misfit (t = -1), the transition is from an equiaxed shape to an elongated shape, resulting in a break in rotational symmetry. For systems with nondilatational misfit (-1 < t < 1; t not equal 0), the transition involves a break in mirror symmetries normal to the x- and y-axes. The transition is continuous in all cases, except when 0 < t < 1. For systems which allow an invariant line (-1 less than or equal to t < 0), the critical size increases with an increase in the particle stiffness. However, for systems which do not allow an invariant line (0 < t less than or equal to 1), the critical size first decreases, reaches a minimum, and then starts increasing with increasing particle stiffness; moreover, the transition is also forbidden when the particle stiffness is greater than a critical value.
Resumo:
There has been much interest in understanding collective dynamics in networks of brain regions due to their role in behavior and cognitive function. Here we show that a simple, homogeneous system of densely connected oscillators, representing the aggregate activity of local brain regions, can exhibit a rich variety of dynamical patterns emerging via spontaneous breaking of permutation or translational symmetries. Upon removing just a few connections, we observe a striking departure from the mean-field limit in terms of the collective dynamics, which implies that the sparsity of these networks may have very important consequences. Our results suggest that the origins of some of the complicated activity patterns seen in the brain may be understood even with simple connection topologies.
Resumo:
The thesis is divided into two parts. Part I generalizes a self-consistent calculation of residue shifts from SU3 symmetry, originally performed by Dashen, Dothan, Frautschi, and Sharp, to include the effects of non-linear terms. Residue factorizability is used to transform an overdetermined set of equations into a variational problem, which is designed to take advantage of the redundancy of the mathematical system. The solution of this problem automatically satisfies the requirement of factorizability and comes close to satisfying all the original equations.
Part II investigates some consequences of direct channel Regge poles and treats the problem of relating Reggeized partial wave expansions made in different reaction channels. An analytic method is introduced which can be used to determine the crossed-channel discontinuity for a large class of direct-channel Regge representations, and this method is applied to some specific representations.
It is demonstrated that the multi-sheeted analytic structure of the Regge trajectory function can be used to resolve apparent difficulties arising from infinitely rising Regge trajectories. Also discussed are the implications of large collections of "daughter trajectories."
Two things are of particular interest: first, the threshold behavior in direct and crossed channels; second, the potentialities of Reggeized representations for us in self-consistent calculations. A new representation is introduced which surpasses previous formulations in these two areas, automatically satisfying direct-channel threshold constraints while being capable of reproducing a reasonable crossed channel discontinuity. A scalar model is investigated for low energies, and a relation is obtained between the mass of the lowest bound state and the slope of the Regge trajectory.