22 resultados para CEF3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用Cyanex 923萃取法制备了纳米级CeF3微粉,并研究了分散剂、CeF3量、CeF3预处理灼烧温度和微粉粒径分布等因素对CeF3紫外吸收行为的影响。结果表明,CeF3在255 nm附近有特征吸收峰;分散剂的极性强弱、分散物浓度的改变都会影响吸收峰的强弱;随着粒径的减小,紫外吸收峰发生明显的红移。此外还研究了TiO2包覆CeF3的紫外吸收性质,复合材料在250~400 nm区间内同时出现了TiO2和CeF3的特征吸收峰,复合材料的吸光域范围扩展。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesoporous YF3 nanoflowers were successfully prepared via solvent extraction route. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicated that these nanoflowers with uneven porous architectures had a spherical shape and were consisted of many YF3 nanosheets with a thickness of about 15 not. Energy-dispersive spectroscopy (EDS) analysis was used to check the chemical composition and purity of the products. YF3 nanoflowers had bimodal mesoporous distribution and Brunauer-Emmett-Teller (BET) surface area of 116 m(2)/g.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NdF3 and TbF3 nanoparticles were successfully synthesized via a solvent extraction route using Cynex923 (R3P=O). X-ray diffraction (XRD) study showed that pure hexagonal phase NdF3 and pure orthorhombic phase TbF3 could be obtained under the current synthetic conditions. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) observations indicated that as-obtained NdF3 nanoplates have a diameter of 50-80 nm and thickness of 10-20 nm and TbF3 products have sphere morphologies with diameter from 70 to 170 nm. The driving force for the growth of NdF3 nanoplates could be attributed to the hexagonal crystal structure. The luminescence properties of NdF3 and TbF3 nanoparticles were investigated, which indicated that NdF3 nanoparticles showed typical emission at 888,1064, and 1328 nm and TbF3 nanoparticles showed characteristic emission of Tb3+ (f-f).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The excitation and emission spectra of the BaLiF3:Ce3+ phosphors synthesized through solid state reaction have been measured. By investigating the properties of the excitation spectra we point out that the variation in the excitation spectra with the amount of CeF3 dopant results from the different patterns of charge compensation in the matrices. The vacancies of Li+ ions are the favorable charge compensation pattern at low concentration of CeF3 doped, but interstitial F- ions are the major charge compensation pattern when the concentration of CeF3 doped goes beyond a certain value. (C) 2000 Academic Press

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phorsphors of BaY2F8 : Ce3+, BaY2F8: EU2+ and BaY2F8 : Ce, Eu were prepared by higher temperature solid reaction and their excitation, emission and diffuse reflection spectra were made. We firstly found that the competition of energy transfer from Ce3+ to Eu2+ and electron transfer from Ce3+ to EU3+ existed in CeF3 and EuF3-co-doped BaY2F8 systems. The f-f transition emission of EU2+ was increased with increasing x in systems BaY2F8 : 0. 03Ce, xEU. Ce4+ ions coexist,with Ce3+ ions and substitute Y3+ for Ce4+ in the systems BaY2F8 : Eu, Cc.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La3FMo4O16 crystallizes in the triclinic crystal system with space group P (1) over bar [a = 724.86(2) pm, b = 742.26(2) pm, c = 1469.59(3) pm, a = 101.683(2)degrees, beta 102.118(2)degrees, gamma = 100.279(2)degrees] with two formula units per unit cell. The three crystallographically independent La3+ cations show a coordination number of nine each, with one F- and eight O2- anions forming distorted monocapped square antiprisms. The fluoride anion is coordinated by all three lanthanum cations to form a nearly planar triangle. Besides three crystallographically independent tetrahedral [MoO4](2-) units, a fourth one with a higher coordination number (CN = 4 +1) can be found in the crystal structure, forming a dimeric entity with a formula of [Mo2O8](4-) consisting of two edge-connected square pyramids. Several spectroscopic measurements were performed on the title compound, such as infrared, Raman, and diffuse reflectance spectroscopy. Furthermore, La3FMo4O16 was investigated for its capacity to work as host material for doping with luminescent active cations, such as Ce3+ or Pr3+. Therefore, luminescence spectroscopic as well as EPR measurements were performed with doped samples of the title compound. Both the pure and the doped compounds can be synthesized by fusing La2O3, LaF3 and MoO3 (ratio 4:1:12; ca. 1 % CeF3 and PrF3 as dopant, respectively) in evacuated silica ampoules at 850 degrees C for 7 d.