23 resultados para CASTABILITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the quality of casting produced in an experimental short-term heating-cycle investment. Thus, reaction layer and castability of titanium casting using an experimental spinel-based investment (VR) with short heating cycle were compared with the commercial short-heating-cycle spinel-based investment Trinell (TR), the silica-phosphate-based investment Rematitan Plus ( RP), and the conventional spinel-based investment Rematitan Ultra (RU). VR has polymeric fibers added to inorganic particles. Reaction layer assessments were carried out using Vickers hardness and elemental analysis using dispersive X-ray microanalysis (EDX). Mesh patterns were used for castability test, and powder characterization was made by scanning electron microscopy (SEM). Hardness evaluation showed no difference among the investments between 100 and 200 mu m. The most important contaminant element for VR, TR, and RU was oxygen. Higher levels of mold filling were found for TR, VR, and RU compared with that obtained with RP. The quality of castings, characterized by means of the assessments of reaction layer and castability, made from the VR was similar to the commercial investments TR and RU but superior to the RP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shear bond strength between Ni-Cr alloy bonded to a ceramic substrate Introduction: The aim of this study was to evaluate the shear bond strength between a Ni-Cr alloy and a ceramic system submitted or not to thermocycling. Materials and methods: Forty-eight cylinder blocks of Ni-Cr with 3.0 mm diameter by 4.0 mm hight and 48 disc-shaped specimens (7.0 mm in diameter by 2.0 mm thick) composed of ceramic were prepared. The Ni-Cr cylinder blocks were randomised in two groups of 24 specimens each. One group was submitted to air-particle abrasion (sandblasting) with 50 mu m Al2O3 (0.4-0.7 MPa) during 20 s, and the other group was submitted to mechanical retentions with carbide burrs. Each group was subdivided into other two groups (n = 12), submitted or not to thermocycling (500 cycles, 5-55 degrees C). The cylinder blocks were bonded to the disc-shaped ceramic specimens under 10 N of load. The shear bond strengths (MPa) were measured using a universal testing machine at a cross head speed of 0.5 mm/min and 200 kgf of load. The data were submitted to statistical analysis (ANOVA and Tukey's test). Results: The air-particle abrasion group exhibited significantly higher shear bond strength when compared to drilled group (p < 0.05). Conclusions: Thermocycling decreased significantly the bond strengths for all groups tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. Coatings of zirconite, Y2O3 or ZrO2 on wax patterns before investing in phosphate-bonded investments have been recommended to reduce the reaction layer in titanium castings, but they are not easily obtainable. Spinel-based investments are relatively stable with molten titanium and could be used as coatings to improve the quality of castings made with those investments. Purpose. The purpose of this study was to evaluate the effect of pattern coating with a commercial spinel-based investment before investing in 1 of 3 phosphate-bonded investments on the marginal coping fit and surface roughness of commercially pure titanium castings. Material and methods. Ten square acrylic resin patterns (12 x 12 x 2 mm) per group were invested in the phosphate-bonded investments Rematitan Plus (RP), Rema Exakt (RE), and Castorit Super C (CA) with or without a coating of the spinel-based investment, Rematitan Ultra (RU). After casting, the specimens were cleaned and the surface roughness was measured with a profilometer. Copings for dental implants with conical abutment were invested, eliminated, and cast as previously described. The copings were cleaned and misfit was measured with a profile projector (n=10). For both tests, the difference between the mean value of RU only and each value of the phosphate-bonded investment was calculated, and the data were analyzed by 2-way ANOVA and Tukey's HSD test (alpha=.05). In addition, the investment roughness was measured in bar specimens (30 x 10 x 10 mm), and the data (n=10) were analyzed by 1-way ANOVA and Tukey's HSD post hoc test (alpha=.05). Results. Two-way ANOVA for casting surface roughness was significant because of the investment, the coating technique, and the interaction between variables. One-way ANOVA was performed to prove the interaction term, and Tukey's post hoc test showed that RP with coating had the lowest mean, while RP had the highest. CA with coating was not different from RP with coating or CA without coating. RE with coating was similar to CA, while RE was different from all groups. For coping marginal fit, the 2-way ANOVA was significant for the investment, the coating technique, and the interaction between variables. The interaction was analyzed by1-way ANOVA and Tukey's HSD test that showed no significant difference among the coated groups, which had better marginal fit than the groups without coating. Among the groups without coating, CA had significant lower marginal misfit than RP, while RE was not different from CA and RP. For the investment surface roughness, the 1-way ANOVA was significant. CA and RU were smoother than RE and RP (P<.001). Conclusions. The coating technique improved the quality of castings fabricated with phosphate-bonded investments. (J Prosthet Dent 2012;108:51-57)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of different Cr and C contents upon the solidification interval of ASTM A352M-06 Grade CA6NM cast martensitic stainless steel has been investigated using computational thermodynamics, and checked against DTA measurements in samples taken from 13 large cast parts, in order to identify potential sources for improvement on the part castability. Calculation results suggest, indeed, that this would be the case for C: when its content increases from 0.018 to 0.044 wt.% C (within the allowed range in the alloy specification), the solidification intervals increases from 25 to 43 K, which suggests improved castability with decreasing C contents. DTA results, however, do not support this prediction, showing a fairly constant solidification interval around 23 K for all investigated samples. The results are discussed both regarding the impact in alloy processing and the fitness of the existing databases to reproduce experimental results in these limiting cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From recent published data, it is still unclear whether combining additions of Na and Sr have synergistic effects or deleterious interactions, This paper clarifies the interactions between these two modifiers and investigates the effects of such interactions on alloy solidification and castability. It was found that combined additions of Sr and Na do not appear to cause improvement of the modification of the eutectic microstructure even after only a short period after addition. Na addition may promote Sr vaporization and/or oxidation kinetically. leading to a quicker loss of both modifiers, which is blamed for the rapid loss of the modification effect during melt holding. Quenching trials during the eutectic arrest indicate that addition of Sr into Na-modified melts does not alter the eutectic solidification behaviour The effect of Na on eutectic solidification dominates, and the eutectic is observed to evolve with a significant dependency on the thermal gradient, Combining Sr and Na additions produced no beneficial effects on porosity and casting defects. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminium - lithium alloys are specialist alloys used exclusively by the aerospace industry. They have properties that are favourable to the production of modern military aircraft. The addition of approximately 2.5 percent lithium to aluminium increases the strength characteristics of the new alloys by 10 percent. The same addition has the added advantage of decreasing the density of the resulting alloy by a similar percentage. The disadvantages associated with this alloy are primarily price and castability. The addition of 2.5 weight percent lithium to aluminium results in a price increase of 100% explaining the aerospace exclusivity. The processability of the alloys is restricted to ingot casting and wrought treatment but for complex components precision casting is required. Casting the alloys into sand and investment moulds creates a metal - mould reaction, the consequences of which are intolerable in the production of military hardware. The primary object of this project was to investigate and characterise the reactions occurring between the newly poured metal and surface of the mould and to propose a method of counteracting the metal - mould reaction. The constituents of standard sand and investment moulds were pyrolised with lithium metal in order to simplify the complex in-mould reaction and the products were studied by the solid state techniques of powder X-Ray diffraction and magic angle spinning nuclear magnetic resonance spectroscopy. The results of this study showed that the order of reaction was: Organic reagents> > Silicate reagents> Non silicate reagents Alphaset and Betaset were the two organic binders used to prepare the sand moulds throughout this project. Studies were carried out to characterise these resins in order to determine the factors involved in their reaction with lithium. Analysis revealed that during the curing process the phenolic hydroxide groups are not reacted out and that a redox reaction takes place between these hydroxides and the lithium in the molten alloys. Casting experiments carried out to assess the protection afforded by various hydroxide protecting agents showed that modern effective, protecting chemicals such as bis-trimethyl silyl acetamide and hexamethyldisilazane did not inhibit the metal - mould reaction to a sufficiently high standard and that tri-methylchlorosilane was consistently the best performer. Tri-methyl chlorosilane has a simple functionalizing mechanism compared to other hydroxide protecting reagents and this factor is responsible for its superior inhibiting qualities. Comparative studies of 6Li and 7Li N.M.R. spectra (M.A.S. and `off angle') establish that, for solid state (and even solution) analytical purposes 6Li is the preferred nucleus. 6Li M.A.S.N.M.R. spectra were obtained for thermally treated laponite clay. At temperatures below 800oC both dehydrated and rehydrated samples were considered. The data are consistent with mobility of lithium ions from the trioctahedral clay sites at 600oC. The superior resolution achievable in 6Li M.A.S.N.M.R. is demonstrated in the analysis of a microwave prepared lithium exchanged clay where 6Li spectroscopy revelaed two lithium sites in comparison to 7Li M.A.S.N.M.R. which gave only a single lithium resonance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Design of casting entails the knowledge of various interacting factors that are unique to casting process, and, quite often, product designers do not have the required foundry-specific knowledge. Casting designers normally have to liaise with casting experts in order to ensure the product designed is castable and the optimum casting method is selected. This two-way communication results in long design lead times, and lack of it can easily lead to incorrect casting design. A computer-based system at the discretion of a design engineer can, however, alleviate this problem and enhance the prospect of casting design for manufacture. This paper proposes a knowledge-based expert system approach to assist casting product designers in selecting the most suitable casting process for specified casting design requirements, during the design phase of product manufacture. A prototype expert system has been developed, based on production rules knowledge representation technique. The proposed system consists of a number of autonomous but interconnected levels, each dealing with a specific group of factors, namely, casting alloy, shape and complexity parameters, accuracy requirements and comparative costs, based on production quantity. The user interface has been so designed to allow the user to have a clear view of how casting design parameters affect the selection of various casting processes at each level; if necessary, the appropriate design changes can be made to facilitate the castability of the product being designed, or to suit the design to a preferred casting method.