21 resultados para CASPT2


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protonation effect on the vibrational and electronic spectra of 4-aminoazobenzene and 4-(dimethylamino)azobenzene was investigated by resonance Raman spectroscopy, and the results were discussed on the basis of quantum-chemical calculations. Although this class of molecular systems has been investigated in the past concerning the azo-hydrazone tautomerism, the present work is the first to use CASSCF/CASPT2 calculations to unveil the structure of both tautomers as well the nature of the molecular orbitals involved in chromophoric moieties responsible for the resonance Raman enhancement patterns. More specifically both the resonance Raman and theoretical results show clearly that in the neutral species, the charge transfer transition involves mainly the azo moiety, whereas in the protonated forms there is a great difference, depending on the tautomer. In fact, for the azo tautomer the transition is similar to that observed in the corresponding neutral species, whereas in the hydrazone tautomer such a transition is much more delocalized due to the contribution of the quinoid structure. The characterization of protonated species and the understanding of the tautomerization mechanism are crucial for controlling molecular properties depending on the polarity and pH of the medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low-lying X-1 Sigma(+), a(3)Delta, A(1)Delta, b(3)Sigma(+), B-1 Pi, c(3)Pi, C-1 Phi, D-1 Sigma(+), E-1 Pi, d(1)Phi, and e(3)Pi electronic states of RhB have been investigated at the ab initio level, using the multistate multiconfigurational second-order perturbation (MS-CASPT2) theory, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the eleven electronic states included in this work, only three (the X-1 Sigma(+), D-1 Sigma(+), and E-1 Pi states) have been investigated experimentally. Potential energy curves, spectroscopic constants, dipole moments, binding energies, and chemical bonding aspects are presented for all electronic states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonadiabatic photochemistry of 6-azauracil has been studied by means of the CASPT2//CASSCF protocol and double-zeta plus polarization ANO basis sets. Minimum energy states, transition states, minimum energy paths, and surface intersections have been computed in order to obtain an accurate description of several potential energy hypersurfaces. It is concluded that, after absorption of ultraviolet radiation (248 nm), two main relaxation mechanisms may occur, via which the lowest (3)(pi pi*) state can be populated. The first one takes place via a conical intersection involving the bright (1)(pi pi*) and the lowest (1)(n pi*) states, ((1)pi pi*/(1)n pi*)(CI), from which a low energy singlet-triplet crossing, ((1)n pi*/(3)pi pi*)(STC), connecting the (1)(n pi*) state to the lowest (3)(pi pi*) triplet state is accessible. The second mechanism arises via a singlet-triplet crossing, ((1)pi pi*/(3)n pi*)(STC), leading to a conical intersection in the triplet manifold, ((3)n pi*/(3)pi pi*)(CI), evolving to the lowest (3)(pi pi*) state. Further radiationless decay to the ground state is possible through a (gs/(3)pi pi*)(STC).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonadiabatic photochemistry of the guanine molecule (2-amino-6-oxopurine) and some of its tautomers has been studied by means of the high-level theoretical ab initio quantum chemistry methods CASSCF and CASPT2. Accurate computations, based by the first time on minimum energy reaction paths, states minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of the molecules lead to interpret the photochemistry of guanine and derivatives within a three-state model. As in the other purine DNA nucleobase, adenine, the ultrafast subpicosecond fluorescence decay measured in guanine is attributed to the barrierless character of the path leading from the initially populated (1)(pi pi* L-a) spectroscopic state of the molecule toward the low-lying methanamine-like conical intersection (gs/pi pi* L-a)(CI). On the contrary, other tautomers are shown to have a reaction energy barrier along the main relaxation profile. A second, slower decay is attributed to a path involving switches toward two other states, (1)(pi pi* L-b) and, in particular, (1)(n(o)pi*), ultimately leading to conical intersections with the ground state. A common framework for the ultrafast relaxation of the natural nucleobases is obtained in which the predominant role of a pi pi*-type state is confirmed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photophysics of 8-azaadenine (8-AA) has been studied with the CASPT2//CASSCF protocol and ANO-L double-zeta basis sets. Stationary equilibrium structures, surface crossings, minimum energy paths, and linear interpolations have been used to study possible mechanisms to populate the lowest triplet state, T-1 (3)(pi pi*), capable of sensitizing molecular oxygen. Our results show that two main mechanisms can occur after photoexcitation to the S-2 (1)(pi pi*) state. The first one is through the S-2/S-1 conical intersection (((1)pi pi*/(1)n pi*)(Cl)), leading to the S-1 ((1)n pi*) state minimum, (S-1 ((1)n pi*))(min), where a singlet-triplet crossing, ((1)n pi*/(3)pi pi*)(STC), is accessible. The second one starts with the ((1)pi pi*/(3)n pi*)(STC) at the (S-2((1)pi pi*))(min), from which the system can evolve to the (T-2 ((3)n pi*))(min), with subsequent population of the T-1 excited electronic state, due to the ((3)n pi*/(3)pi pi*)(Cl) conical intersection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this contribution, the multiconfigurational second-order perturbation theory method based on a complete active space reference wave function (CASSCF/CASPT2) is applied to study all possible single and double proton/hydrogen transfers between the nucleobases in the adenine-thymine (AT) base pair, analyzing the role of excited states with different nature [localized (LE) and charge transfer (CT)] and considering concerted as well as step-wise mechanisms. According to the findings, once the lowest excited states, localized in adenine, are populated during UV irradiation of the Watson-Crick base pair, the proton transfer in the N-O bridge does not require high energy in order to populate a CT state. The latter state will immediately relax toward a crossing with the ground state, which will funnel the system to either the canonical structure or the imino-enol tautomer. The base pair is also capable of repairing itself easily since the imino-enol species is unstable to thermal conversion.