18 resultados para CARDIOTOCOGRAPHY
Resumo:
A valuable alternative to US cardiotocography, for fetal surveillance, can be offered by phonocardiography, a passive and low cost acoustic recording of fetal heart sounds. A crucial point is the exact recognizing of the fetal heart sounds, associated to each fetal heart beat, and then the estimation of FHR signal. In this work, software for FHR assessment from phonocardiographic signals was developed. To check the reliability of the software, obtained results were compared with those of simultaneously recorded cardiotocographic signals. Results seemed to be satisfying, as provided FHR series were almost all confined within FHR-CTG +/- 3 bpm, where FHR-CTG were FHR series provided by commercial US cardiotocographic devices, currently employed in clinical routine.
Resumo:
Cardiotocography provides significant information on foetal oxygenation linked to characteristics of foetal heart rate signals. Among most important we can mention foetal heart rate variability, whose spectral analysis is recognised like useful in improving diagnosis of pathologic conditions. However, despite its importance, a standardisation of definition and estimation of foetal heart rate variability is still searched. Some guidelines state that variability refers to fluctuations in the baseline free from accelerations and decelerations. This is an important limit in clinical routine since variability in correspondence of these FHR alterations has always been regarded as particularly significant in terms of prognostic value. In this work we compute foetal heart rate variability as difference between foetal heart rate and floatingline and we propose a method for extraction of floatingline which takes into account accelerations and decelerations. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
The long-term foetal surveillance is often to be recommended. Hence, the fully non-invasive acoustic recording, through maternal abdomen, represents a valuable alternative to the ultrasonic cardiotocography. Unfortunately, the recorded heart sound signal is heavily loaded by noise, thus the determination of the foetal heart rate raises serious signal processing issues. In this paper, we present a new algorithm for foetal heart rate estimation from foetal phonocardiographic recordings. A filtering is employed as a first step of the algorithm to reduce the background noise. A block for first heart sounds enhancing is then used to further reduce other components of foetal heart sound signals. A complex logic block, guided by a number of rules concerning foetal heart beat regularity, is proposed as a successive block, for the detection of most probable first heart sounds from several candidates. A final block is used for exact first heart sound timing and in turn foetal heart rate estimation. Filtering and enhancing blocks are actually implemented by means of different techniques, so that different processing paths are proposed. Furthermore, a reliability index is introduced to quantify the consistency of the estimated foetal heart rate and, based on statistic parameters; [,] a software quality index is designed to indicate the most reliable analysis procedure (that is, combining the best processing path and the most accurate time mark of the first heart sound, provides the lowest estimation errors). The algorithm performances have been tested on phonocardiographic signals recorded in a local gynaecology private practice from a sample group of about 50 pregnant women. Phonocardiographic signals have been recorded simultaneously to ultrasonic cardiotocographic signals in order to compare the two foetal heart rate series (the one estimated by our algorithm and the other provided by cardiotocographic device). Our results show that the proposed algorithm, in particular some analysis procedures, provides reliable foetal heart rate signals, very close to the reference cardiotocographic recordings. © 2010 Elsevier Ltd. All rights reserved.