975 resultados para CARDIAC-MUSCLE
Resumo:
Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media.
Resumo:
Cachexia is a complex syndrome characterized by severe weight loss frequently observed in cancer patients and associated with poor prognosis. Cancer cachexia is also related to modifications in cardiac muscle structure and metabolism leading to cardiac dysfunction. In order to better understand the cardiac remodeling induced by bladder cancer and the impact of exercise training after diagnosis on its regulation, we used an animal model of bladder cancer induced by exposition to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in the drinking water. Healthy animals and previously BBN exposed animals were submitted to a training program in a treadmill at a speed of 20m/min, 60 min/day, 5 days/week during 13 weeks. At the end of the protocol, animals exposed to BBN presented a significant decrease of body weight, in comparison with control groups, supporting the presence of cancer cachexia. Morphological analysis of the cardiac muscle sections revealed the presence of fibrosis and a significant decrease of cardiomyocyte’s cross-sectional area, suggesting the occurrence of cardiac dysfunction associated with bladder cancer. These modifications were accompanied by heart metabolic remodeling characterized by a decreased fatty acid oxidation given by diminished levels of ETFDH and of complex II subunit from the respiratory chain. Exercise training promoted an increment of connexin 43, a protein involved in cardioprotection, and of c-kit, a protein present in cardiac stem cells. These results suggest an improved heart regenerative capacity induced by exercise training. In conclusion, endurance training seems an attractive non-pharmacological therapeutic option for the management of cardiac dysfunction in cancer cachexia.
Resumo:
RESUMO: As células eucarióticas evoluíram um sistema de sinalização complexo que lhes permite responder aos sinais extracelulares e intracelulares. Desta forma, as vias de sinalização são essenciais para a sobrevivência da célula e do organismo, uma vez que regulam processos fundamentais, tais como o desenvolvimento, o crescimento, a imunidade, e a homeostase dos tecidos. A via de transdução de sinal Hedgehog (Hh) envolve o receptor Patched1 (Ptch1), que tem um efeito inibidor sobre a proteína Smoothened (Smo) na ausência dos seus ligandos, as proteínas Sonic hedgehog (Shh). Estas proteínas são reguladores fundamentais do desenvolvimento embrionário, como ilustrado pelas malformações drásticas observadas em embriões humanos e de murganho com perturbações da transdução de sinal da via Hh e que incluem polidactilia, defeitos craniofaciais e malformações ósseas. Igualmente importantes são as consequências da ativação inapropriada da via de sinalização Hh na formação de tumores. Curiosamente, os componentes desta via localizam-se nos cílios primários. Além disso, demonstrou-se que esta localização é crucial para a sinalização através da via Hh. Na presença dos ligandos, Ptch1 é internalizado e destinado a degradação ou sequestrado num compartimento da célula de onde não pode desempenhar o seu papel inibitório. A proteína Arl13b é uma pequena GTPase pertencente à família Arf/Arl da superfamília Ras de pequenas GTPases e foi implicada no síndrome de Joubert, uma ciliopatia caracterizada por ataxia congénita cerebelar, hipotonia, atrso mental e cardiopatia congénita. Murganhos deficientes para Arl13b, chamado hennin (hnn) morrem morrem prematuramente ao dia 13,5 de gestação (E13,5) e exibem anomalias morfológicas nos cílios que levam à interrupção da sinalização Hh. Além disso, a Arl13b está diretamente envolvida na regulação da via Hh, controlando a localização de vários componentes desta via nos cílios primários. Neste trabalho, mostramos que a Arl13b se localiza em circular dorsal ruffles (CDRs), que são estruturas de actina envolvidas em macropinocitose e internalização de recetores, e que regula a sua formação. Além disso, aprofundámos o conhecimento do processo de ativação da via de sinalização Hh, mostrando que as CDRs sequestram seletivamente e internalizam o recetor Ptch1. As CDRs formam-se minutos após ativação da via por ligandos Shh ou pelo agonista de Smo SAG e continuam a ser formadas a partir daí, sugerindo uma indução contínua da reorganização do citoesqueleto de actina quando a via está ativada. Observámos ainda que a inibição da formação de CDRs através do silenciamento de WAVE1, uma proteína necessária para a formação destas estruturas, resulta na diminuição da ativação da via de sinalização Hh. Além disso, o bloqueio da macropinocitose, que se segue ao fecho das CDRs, através do silenciamento de uma proteína necessária para a cisão de macropinossomas, nomeadamente a proteína BARS, tem um efeito semelhante. Estes resultados sugerem que as CDRs e a macropinocitose são necessárias para a ativação da via de sinalização Hh e indicam que esta via de internalização controla os níveis de sinal Hh. Durante o desenvolvimento, as células proliferativas dependem do cílio primário para a transdução de várias vias de sinalização. A via Hh induz a diferenciação do músculo cardíaco. Por conseguinte, os murganhos deficientes na via de sinalização Hh exibem uma variedade de defeitos de lateralidade, incluindo alteração do looping do coração, como pode ser visto em murganhos deficientes para Arl13b. Por conseguinte, investigámos o papel da Arl13b no desenvolvimento do coração. Mostramos que a Arl13b é altamente expressa no coração de embriões de murganho e de murganhos adultos ao nível do mRNA e da proteína. Além disso, o perfil de distribuição da Arl13b no coração segue o dos cílios primários, que são essenciais para o desenvolvimento cardíaco. Corações de murganhos hnn no estadio E12,5 mostram um canal átrio-ventricular aberto, espessamento da camada compacta ventricular e aumento do índice mitótico no ventrículo esquerdo. Além disso, um atraso de 1 a 2 dias no desenvolvimento é observado em corações de murganhos hnn, quando comparados com controlos selvagens no estadio E13,5. Assim, estes resultados sugerem que a Arl13b é necessária para o desenvolvimento embrionário do coração e que defeitos cardíacos podem contribuir para a letalidade embrionária de murganhos hnn. Em suma, foi estabelecido um novo mecanismo para a regulação dos níveis de superfície do recetor Ptch1, que envolve a remodelação do citoesqueleto de actina e a formação de CDRs após a ativação da via de sinalização Hh. Este mecanismo permite um feedback negativo que evita a repressão excessiva da via através da remoção de Ptch1 da superfície da célula. Além disso, determinou-se que uma mutação de perda de função na Arl13b causa defeitos cardíacos durante o desenvolvimento, possivelmente relacionados com a associação dos defeitos em cílios primários e na sinalização Hh, existentes em murganhos deficientes para Arl13b. A via de sinalização Hh tem tido um papel central entre as vias de sinalização, uma vez que a sua regulação é crucial para o funcionamento apropriada da célula. Assim, a descoberta de um novo mecanismo de tráfego através de macropinocitose e CDRs que controla a ativação e repressão da via de sinalização Hh traz novas perspetivas de como esta via pode ser regulada e pode ainda conduzir à identificação de novos alvos e estratégias terapêuticas. --------------------ABSTRACT: Eukaryotic cells have evolved a complex signaling system that allows them to respond to extracellular and intracellular cues. Signaling pathways are essential for cell and organism survival, since they regulate fundamental processes such as development, growth, immunity, and tissue homeostasis. The Hedgehog (Hh) pathway of signal transduction involves the receptor Patched1 (Ptch1), which has an inhibitory effect on Smoothened (Smo) in the absence of its ligands, the Sonic hedgehog (Shh) proteins. These proteins are fundamental regulators of embryonic development, as illustrated by the dramatic malformations seen in human and mouse embryos with perturbed Hh signal transduction that include polydactyly, craniofacial defects and skeletal malformations. Equally important are the consequences of inappropriate activation of the Hh signaling response in tumor formation. Interestingly, the components of this pathway localize to primary cilia. Moreover, it has been shown that this localization is crucial for Hh signaling. However, in the presence of the ligands, Ptch1 is internalized and destined for degradation or sequestered in a cell compartment where it no longer can play its inhibitory role. ADP-ribosylation factor-like (Arl) 13b, a small GTPase belonging to Arf/Arl family of the Ras superfamily of small GTPases has been implicated in Joubert syndrome, a ciliopathy characterized by congenital cerebellar ataxia, hypotonia, intellectual disability and congenital heart disease. Arl13b-deficient mice, called hennin (hnn) die at embryonic day 13.5 (E13.5) and display morphological abnormalities in primary cilia that lead to the disruption of Hh signaling. Furthermore, Arl13b is directly involved in the regulation of Hh signaling by controlling the localization of several components of this pathway to primary cilia. Here, we show that Arl13b localizes to and regulates the formation of circular dorsal rufles (CDRs), which are actin-basedstructures known to be involved in macropinocytosis and receptor internalization. Additionally, we extended the knowledge of the Hh signaling activation process by showing that CDRs selectively sequester and internalize Ptch1 receptors. CDRs are formed minutes after Hh activation by Shh ligands or the Smo agonist SAG and keep being formed thereafter, suggesting a continuous induction of actin reorganization when the pathway is switched on. Importantly, we observed that disruption of CDRs by silencing WAVE1, a protein required for CDR formation, results in down-regulation of Hh signaling activation. Moreover, the blockade of macropinocytosis, which follows CDR closure, through silencing of a protein necessary for the fission of macropinosomes, namely BARS has a similar effect. These results suggest that CDRs and macropinocytosis are necessary for activation of Hh signaling and indicate that this pathway of internalization controls Hh signal levels. During development, proliferating cells rely on the primary cilium for the transduction of several signaling pathways. Hh induces the differentiation of cardiac muscle. Accordingly, Hh-deficient mice display a variety of laterality defects, including alteration of heart looping, as seen in Arl13b-deficient mice. Therefore, we investigated the role of Arl13b in heart development. We show that Arl13b is highly expressed in the heart of both embryonic and adult mice at mRNA and protein levels. Also, Arl13b localization profile mimics that of primary cilia, which have been shown to be essential to early heart development. E12.5 hnn hearts show an open atrioventricular channel, increased thickening of the ventricular compact layer and increased mitotic index in the left ventricle. Moreover, a delay of 1 to 2 days in development is observed in hnn hearts, when compared to wild-type controls at E13.5. Hence, these results suggest that Arl13b is necessary for embryonic heart development and that cardiac defects might contribute to the embryonic lethality of hnn mice. Altogether, we established a novel mechanism for the regulation of Ptch1 surface levels, involving cytoskeleton remodeling and CDR formation upon Hh signaling activation. This mechanism allows a negative feedback loop that prevents excessive repression of the pathway by removing Ptch1 from the cell surface. Additionally, we determined that the Arl13b loss-offunction mutation causes cardiac defects during development, possibly related to the associated ciliary and Hh signaling defects found in Arl13b-deficient mice. Hh signaling has taken a center stage among the signaling pathways since its regulation is crucial for the appropriate output and function of the cell. Hence, the finding of a novel trafficking mechanism through CDRs and macropinocytosis that controls Hh signaling activation and repression brings new insights to how this pathway can be regulated and can lead to the discovery of novel therapeutic targets and strategies.
Resumo:
Glycogen content of white and red skeletal muscles, cardiac muscle, and liver was investigated in conditions where changes in plasma levels of non-esterified fatty acids (NEFA) occur. The experiments were performed in fed and 12 and 48 h-fasted rats. The animals were also submitted to swimming for 10 and 30 min. Glycogen content was also investigated in both pharmacologically induced low plasma NEFA levels fasted rats and pharmacologically induced high plasma NEFA levels fed rats. The participation of Akt and glycogen synthase kinase-3 (GSK-3) in the changes observed was investigated. Plasma levels of NEFA, glucose, and insulin were determined in all conditions. Fasting increased plasma NEFA levels and reduced glycogen content in the liver and skeletal muscles. However, an increase of glycogen content was observed in the heart under this condition. Akt and GSK-3 phosphorylation was reduced during fasting in the liver and skeletal muscles but it remained unchanged in the heart. Our results suggest that in conditions of increased plasma NEFA levels, changes in insulin-stimulated phosphorylation of Akt and GSK-3 and glycogen content vary differently in liver, skeletal muscles, and heart. Akt and GSK-3 phosphorylation and glycogen content are decreased in liver and skeletal Muscles, but in the heart it remain unchanged (Akt and GSK-3 phosphorylation) or increased (glycogen content) due to consistent increase of plasma NEFA levels. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Recent lines of evidences indicate that several pathological conditions, as cardiovascular diseases, are associated with oxidative stress. In order to validate a butylated hydroxytoluene (BHT)-induced experimental model of oxidative stress in the cardiac tissue and serum lipids, 12 Wistar rats were divided into two groups, a control group and the BHT group, Which received BHT i.p. twice a week (1500 mg/kg body Weight) during 30 days. BHT group presented lower body weight gain and heart weight. BHT induced toxic effects on serum through increased triacylglycerols (TG), VLDL and LDL-cholesterol concentrations. The heart of BHT animals showed alteration of antioxidant defenses and increased concentrations of lipid hydroperoxides, indicating elevated lipoperoxidation. TG concentrations and lactate dehydrogenase activities were elevated in the cardiac Muscle of BHT animals. Thus, long-term administration of BHT is capable to induce oxidative and metabolic alterations similarly to some pathological disorders, constituting an efficient experimental model to health scientific research. (c) 2005 Elsevier GrnbH. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE: To assess the behavior of cardiac variables in animals exposed to cigarette smoke. METHODS: Two groups of Wistar rats were studied as follows: control group (C), comprising 28 animals; and smoking group (S), comprising 23 animals exposed to cigarette smoke for 30 days. Left ventricular cardiac function was assessed in vivo with transthoracic echocardiography, and myocardial performance was analyzed in vitro in preparations of isolated left ventricular papillary muscle. The cardiac muscle was assessed in isometric contractions with an extracellular calcium concentration of 2.5 mmol/L. RESULTS: No statistical difference was observed in the values of the body variables of the rats and in the mechanical data obtained from the papillary muscle between the control and smoking groups. The values of left ventricular systolic diameter were significantly greater in the smoking animals than in the control animals (C= 3.39 ± 0.4 mm and S= 3.71 ± 0.51 mm, P=0.02). A significant reduction was observed in systolic shortening fraction (C= 56.7 ± 4.2% and S= 53.5 ± 5.3%, P=0.02) and in ejection fraction (C= 0.92 ± 0.02 and S= 0.89 ± 0.04, P=0.01). CONCLUSION: The rats exposed to cigarette smoke had a reduction in left ventricular systolic function, although their myocardial function was preserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Isolated papillary muscles have often been used in myocardial mechanical function studies. The objective of the present study was to compare the mechanical function of papillary muscle isolated from left ventricle between Wistar (W) and Wistar-Kyoto (WKY) rats of different ages (1, 3, 6 and 12 months), in order to examine whether there is a difference in intrinsic mechanical properties of muscle between the two rat strains. Muscles were perfused with Krebs-Henseleit solution at 28°C and studied isometrically and isotonically at a stimulation rate of 0.2 Hz. The W and WKY showed statistically significant differences during both isometric and isotonic contractions. During isometric contraction? (l) the peak developed tension (DT) and + dT/dt were lower in WKY rats in the 1 mo groups, (2) the resting tension (RT) was greater in WKY at 3, 6 and 12 mo. (3) time to peak tension (TPT) was greater in WKY at 3 and 12 mo, (4) time for tension to fall from peak to 50% of peak tension (RT 1/2) was greater in WKY at 3 mo and (5) - dT/dt was lower in WKY at 1 and 3 mo. During isotonic contraction, (1) the peak shortening (PS) and -dL/dt were lower in WKY at 12 mo, (2) the time to peak shortening (TPS) was greater in WKY at 3 and 12 mo; (3) + dL/dt was lower in WKY at 3, 6, and 12 mo and (4) the relative variation of length (Lmax-PS)/Lmax was greater in WKY at 6 and 12 mo. These data showed a difference in mechanical behaviour of the papillary muscle between Wistar and Wistar-Kyoto rats of different age.
Resumo:
Purpose: To determine the effect of dietary restriction on metabolic pathways and the relationship of the metabolic shifting on antioxidant enzymes in cardiac tissue. Design: Randomized, controlled study. Male rats at 60 days old were randomly divided into four groups. Materials and Methods: The rats of control groups C30 and C60 were given free access to the diet over 30 and 60 days. The rats of the DR30 group were fed 60% of the chow consumed by the control groups over 30 days. The animals of the DR60 group ate 60% of the amount consumed by the C60 group over 60 days. Serum was used for total protein, lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Protein, glycogen, total lipids, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), LDH, AST and ALT were determined in cardiac tissue. Results: Dietary restriction induced diminished serum and cardiac LDH activities. AST activities were lower in the serum and cardiac muscle of the DR60 animals. Dietary restriction induced elevated total lipid concentrations in cardiac muscle. No significant differences were observed in total protein and glycogen content among the groups. Antioxidant enzyme determinations demonstrated increased cardiac GSH-Px activities in the DR60 animals and increased SOD activities in the cardiac tissue of both feed-restricted groups. Conclusions: Dietary restriction was protective against oxidative stress in the heart by improving cardiac endogenous antioxidant defences and shifting the metabolic pathway for energy production.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.
Resumo:
The cardiac voltage-gated sodium channel, Nav1.5, plays a central role in cardiac excitability and impulse propagation and associates with the dystrophin multiprotein complex at the lateral membrane of cardiomyocytes. It was previously shown that Nav1.5 protein content and the sodium current (l Na) were both decreased in cardiomyocytes of dystrophin-deficient mdx (5cv) mice. In this study, wild-type and mdx (5cv) mice were treated for 7 days with the proteasome inhibitor MG132 (10 μg/Kg/24 h) using implanted osmotic mini pumps. MG132 rescued both the total amount of Nav1.5 protein and l Na but, unlike in previous studies, de novo expression of dystrophin was not observed in skeletal or cardiac muscle. This study suggests that the reduced expression of Nav1.5 in dystrophin-deficient cells is dependent on proteasomal degradation.
Resumo:
Dilated cardiomyopathy is a serious and almost inevitable complication of Duchenne Muscular Dystrophy, a devastating and fatal disease of skeletal muscle resulting from the lack of functional dystrophin, a protein linking the cytoskeleton to the extracellular matrix. Ultimately, it leads to congestive heart failure and arrhythmias resulting from both cardiac muscle fibrosis and impaired function of the remaining cardiomyocytes. Here we summarize findings obtained in several laboratories, focusing on cellular mechanisms that result in degradation of cardiac functions in dystrophy. This article is part of a Special Issue entitled "Calcium Signaling in Heart".
Resumo:
In cardiac muscle, a number of posttranslational protein modifications can alter the function of the Ca(2+) release channel of the sarcoplasmic reticulum (SR), also known as the ryanodine receptor (RyR). During every heartbeat RyRs are activated by the Ca(2+)-induced Ca(2+) release mechanism and contribute a large fraction of the Ca(2+) required for contraction. Some of the posttranslational modifications of the RyR are known to affect its gating and Ca(2+) sensitivity. Presently, research in a number of laboratories is focused on RyR phosphorylation, both by PKA and CaMKII, or on RyR modifications caused by reactive oxygen and nitrogen species (ROS/RNS). Both classes of posttranslational modifications are thought to play important roles in the physiological regulation of channel activity, but are also known to provoke abnormal alterations during various diseases. Only recently it was realized that several types of posttranslational modifications are tightly connected and form synergistic (or antagonistic) feed-back loops resulting in additive and potentially detrimental downstream effects. This review summarizes recent findings on such posttranslational modifications, attempts to bridge molecular with cellular findings, and opens a perspective for future work trying to understand the ramifications of crosstalk in these multiple signaling pathways. Clarifying these complex interactions will be important in the development of novel therapeutic approaches, since this may form the foundation for the implementation of multi-pronged treatment regimes in the future. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.