94 resultados para CARBOXYPEPTIDASE-A


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac mast cells (MC) are apposed to capillaries within the heart and release renin and proteases capable of metabolizing angiotensins (Ang). Therefore, we hypothesized that mast cell degranulation could alter the rat coronary vascular responsiveness to the arterial delivered Ang I and Ang II, taking into account carboxypeptidase and chymase-1 activities. Hearts from animals that were either pretreated or not with systemic injection of the secretagogue compound 48/80 were isolated and mounted on a Langendorff apparatus to investigate coronary reactivity. The proteolytic activity of the cardiac perfusate from isolated hearts, pretreated or not with the secretagogue, toward Ang I and tetradecapeptide renin substrate was analyzed by HPLC. Coronary vascular reactivity to peptides was not affected by compound 48/80 pretreatment, despite the extensive amount of cardiac MC degranulation. Cardiac MC activation did not modify the generation of both Ang II and Ang 5-10 from Ang I by cardiac perfusate, activities that could be ascribed to MC carboxypeptidase and chymase-1, respectively. An aliskiren-resistant Ang I-forming activity was increased in perfusates from secretagogue-treated hearts. Thus, cardiac MC proteases capable of metabolizing angiotensins do not affect rat coronary reactivity to arterial delivered Ang I and II. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vps4p (End13p) is an AAA-family ATPase that functions in membrane transport through endosomes, sorting of soluble vacuolar proteins to the vacuole, and multivesicular body (MVB) sorting of membrane proteins to the vacuole lumen. In a yeast two-hybrid screen with Vps4p as bait we isolated VPS20 (YMR077c) and the novel open reading frame YLA181c, for which the name VTA1 has recently been assigned (Saccharomyces Genome Database). Vps4p directly binds Vps20p and Vta1p in vitro and binding is not dependent on ATP-conversely, Vps4p binding to Vps20p is partially sensitive to ATP hydrolysis. Both ATP binding [Vps4p-(K179A)] and ATP hydrolysis [Vps4p-(E233Q)] mutant proteins exhibit enhanced binding to Vps20p and Vta1p in vitro. The Vps4p-Vps20p interaction involves the coiled-coil domain of each protein, whereas the Vps4p-Vta1p interaction involves the (non-coiled-coil) C-terminus of each protein. Deletion of either VPS20 (vps20Delta) or VTA1 (vta1Delta) leads to similar class E Vps(-) phenotypes resembling those of vps4Delta, including carboxypeptidase Y (CPY) secretion, a block in ubiquitin-dependent MVB sorting, and a delay in both post-internalisation endocytic transport and biosynthetic transport to the vacuole. The vacuole resident membrane protein Sna3p (whose MVB sorting is ubiquitin-independent) does not appear to exit the class E compartment or reach the vacuole in cells lacking Vps20p, Vta1p or Vps4p, in contrast to other proteins whose delivery to the vacuole is only delayed. We propose that Vps20p and Vta1p regulate Vps4p function in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of mycotoxigenic moulds such as Aspergillus, Penicillium and Fusarium in food and feed has an important impact on public health, by the appearance of acute and chronic mycotoxicoses in humans and animals, which is more severe in the developing countries due to lack of food security, poverty and malnutrition. This mould contamination also constitutes a major economic problem due the lost of crop production. A great variety of filamentous fungi is able to produce highly toxic secondary metabolites known as mycotoxins. Most of the mycotoxins are carcinogenic, mutagenic, neurotoxic and immunosuppressive, being ochratoxin A (OTA) one of the most important. OTA is toxic to animals and humans, mainly due to its nephrotoxic properties. Several approaches have been developed for decontamination of mycotoxins in foods, such as, prevention of contamination, biodegradation of mycotoxins-containing food and feed with microorganisms or enzymes and inhibition or absorption of mycotoxin content of consumed food into the digestive tract. Some group of Gram-positive bacteria named lactic acid bacteria (LAB) are able to release some molecules that can influence the mould growth, improving the shelf life of many fermented products and reducing health risks due to exposure to mycotoxins. Some LAB are capable of mycotoxin detoxification. Recently our group was the first to describe the ability of LAB strains to biodegrade OTA, more specifically, Pediococcus parvulus strains isolated from Douro wines. The pathway of this biodegradation was identified previously in other microorganisms. OTA can be degraded through the hydrolysis of the amide bond that links the L-β-phenylalanine molecule to the ochratoxin alpha (OTα) a non toxic compound. It is known that some peptidases from different origins can mediate the hydrolysis reaction like, carboxypeptidase A an enzyme from the bovine pancreas, a commercial lipase and several commercial proteases. So, we wanted to have a better understanding of this OTA degradation process when LAB are involved and identify which molecules where present in this process. For achieving our aim we used some bioinformatics tools (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV). We also designed specific primers and realized gene specific PCR. The template DNA used came from LAB strains samples of our previous work, and other DNA LAB strains isolated from elderberry fruit, silage, milk and sausages. Through the employment of bioinformatics tools it was possible to identify several proteins belonging to the carboxypeptidase family that participate in the process of OTA degradation, such as serine type D-Ala-D-Ala carboxypeptidase and membrane carboxypeptidase. In conclusions, this work has identified carboxypeptidase proteins being one of the molecules present in the OTA degradation process when LAB are involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ocorrência de bolores micotoxigénicos pertencentes aos géneros Aspergillus, Penicillium e Fusarium em alimentos para consumo Humano e animal, tem um impacto importante sobre a saúde pública e constitui também um importante problema económico. Isto é devido à síntese por este tipo de fungos filamentosos de metabolitos altamente tóxicos conhecidos como micotoxinas. A maioria das micotoxinas são substâncias cancerígenas, mutagénicas, neurotóxicas e imunossupressoras, sendo a ocratoxina A (OTA) uma das mais importantes. A OTA é uma micotoxina, tóxica para os animais e Humanos principalmente devido às suas propriedades nefrotóxicas. Alguns grupos de bactérias gram positivas nomeadamente as bactérias do ácido láctico (BAL) são capazes de controlar o crescimento de fungos, melhorando e aumentando a vida útil de muitos produtos fermentados e, assim, reduzir os riscos para a saúde provocados pela exposição às micotoxinas. Algumas BAL são, também, capazes de destoxificar certas micotoxinas. Em trabalhos anteriores do nosso grupo foi observada a biodegradação da OTA por estirpes de Pediococcus parvulus isoladas de vinhos do Douro. Assim, com este trabalho, pretendeu-se compreender com maior detalhe o processo de biodegradação da OTA pelas referidas estirpes e identificar quais as enzimas que estão associadas à sua biodegradação. Para atingir este objetivo utilizaram-se algumas ferramentas ioinformáticas (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV), desenharam-se primers específicos e realizaram-se PCR específicos para os genes envolvidos. Através da utilização de ferramentas de bioinformática, foi possível identificar várias proteínas que pertencem à família das carboxipeptidases e que podem eventualmente participar no processo da degradação da OTA, tais como D-Ala-D-Ala carboxipeptidase serínica e carboxipeptidase membranar. Estas BAL podem desempenhar um papel importante na destoxificação da OTA, sendo as carboxipeptidases uma das enzimas envolvidas na sua biodegradação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beta-lactams active against methicillin-resistant Staphylococcus aureus (MRSA) must resist penicillinase hydrolysis and bind penicillin-binding protein 2A (PBP 2A). Cefamandole might share these properties. When tested against 2 isogenic pairs of MRSA that produced or did not produce penicillinase, MICs of cefamandole (8-32 mg/L) were not affected by penicillinase, and cefamandole had a > or =40 times greater PBP 2A affinity than did methicillin. In rats, constant serum levels of 100 mg/L cefamandole successfully treated experimental endocarditis due to penicillinase-negative isolates but failed against penicillinase-producing organisms. This suggested that penicillinase produced in infected vegetations might hydrolyze the drug. Indeed, cefamandole was slowly degraded by penicillinase in vitro. Moreover, its efficacy was restored by combination with sulbactam in vivo. Cefamandole also uniformly prevented MRSA endocarditis in prophylaxis experiments, a setting in which bacteria were not yet clustered in the vegetations. Thus, while cefamandole treatment was limited by penicillinase, the drug was still successful for prophylaxis of experimental MRSA endocarditis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Activation of coagulation and fibrinolysis play a role in the pathophysiology of experimental arthritis. Objective: To determine the extent of activation of the coagulation and fibrinolytic pathways in different joint diseases in humans and to ascertain the factors that may influence fibrin deposition within the joint. METHODS: Plasma from normal subjects (controls, n= 21) and plasma and synovial fluid samples from patients with rheumatoid arthritis (RA; n = 64), osteoarthritis (OA; n = 29), spondyloarthropathy (SpA; n = 22) and crystal arthritis (CA; n = 25) were analyzed for the levels of TF (tissue factor) and tissue factor pathway inhibitor (TFPI) activities, thrombin-antithrombin III (TAT) complexes, and F1 + 2 (thrombin fragment), fibrin d-dimer and thrombin-activated fibrinolysis inhibitor (TAFI) antigenic levels. The measurements were analyzed by pairwise correlation with each other as well as with standard parameters of inflammation [C-reactive protein (CRP), joint leukocyte count]. Inter-group comparisons were performed to look for disease-specific differences. RESULTS: Compared with healthy controls, patients with joint diseases had higher levels of TAT, F1 + 2 and d-dimers in their plasma. In the synovial fluid, TF activity, TAT, d-dimers, and TAFI were significantly higher in inflammatory arthritides than in OA. The levels were highest in RA patients. In the plasma, TF activity was correlated with TAT and d-dimer levels with CRP, TFPI, and TAT. In the synovial fluid, TF activity correlated with plasma CRP levels, synovial fluid leukocyte count, and synovial TAT and TAFI levels. In addition, synovial d-dimers correlated with CRP, and synovial TAFI levels were correlated with synovial F1 + 2 and TAT. CONCLUSIONS: Activation of the coagulation and fibrinolytic cascades in the joint and in the circulation is evident in both inflammatory and degenerative joint diseases. Within the joint, inflammatory mechanisms leading to TF-mediated activation of the coagulation pathway and subsequent fibrin deposition is the most likely explanation for the observed findings. In the plasma, the link between inflammation (CRP increase) and TF activation is weak, and a non-TF-mediated mechanism of coagulation activation could explain these findings. RA is characterized by significantly higher levels of TAT in the synovial fluid and plasma than other arthritides. Although fibrinolytic activity is linked to inflammation, the increased amounts of TAFI in the joint, particularly in RA, may explain why fibrin formation is so prominent in this condition compared with other joint diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T cell migration, essential for immune surveillance and response, is mediated by the integrin LFA-1. CatX, a cysteine carboxypeptidase, is involved in the regulation of T cell migration by interaction with LFA-1. We show that sequential cleavage of C-terminal amino acids from the β(2) cytoplasmic tail of LFA-1, by CatX, enhances binding of the adaptor protein talin to LFA-1 and triggers formation of the latter's high-affinity form. As shown by SPR analysis of peptides constituting the truncated β(2) tail, the cleavage of three C-terminal amino acids by CatX resulted in a 1.6-fold increase of talin binding. Removal of one more amino acid resulted in a 2.5-fold increase over the intact tail. CatX cleavage increased talin-binding affinity to the MD but not the MP talin-binding site on the β(2) tail. This was shown by molecular modeling of the β(2) tail/talin F3 complex to be a result of conformational changes affecting primarily the distal-binding site. Analysis of LFA-1 by conformation-specific mAb showed that CatX modulates LFA-1 affinity, promoting formation of high-affinity from intermediate-affinity LFA-1 but not the initial activation of LFA-1 from a bent to extended form. CatX post-translational modifications may thus represent a mechanism of LFA-1 fine-tuning that enables the trafficking of T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MRSA-Screen test (Denka Seiken Co., Ltd., Tokyo, Japan), consisting of a slide latex agglutination kit that detects PBP 2a with a monoclonal antibody, was blindly compared to the oxacillin disk diffusion test, the oxacillin-salt agar screen, and PCR of the mecA gene for the detection of methicillin resistance in Staphylococcus aureus. A total of 120 methicillin-susceptible S. aureus (MSSA) and 80 methicillin-resistant S. aureus (MRSA) isolates, defined by the absence or presence of the mecA gene, respectively, were tested. The MRSA-Screen test, the oxacillin disk diffusion test, and the oxacillin-salt agar screening test showed sensitivities of 100, 61.3, and 82.5% and specificities of 99.2, 96.7, and 98.3%, respectively. We conclude that the MRSA-Screen is a very accurate, reliable, and fast test (15 min) for differentiation of MRSA from MSSA colonies on agar plates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the case of an 11-year-old female treated for mediastinal T-cell lymphoma who presented renal failure following the second cycle of high-dose methotrexate (HDMTX). Because of life threatening plasma methotrexate (MTX) levels, carboxypeptidase G2 (CPDG2) was administered resulting in a dramatic decrease within 1 hr. The patient recovered from renal failure and no other side effects were observed. Homozygosity for the methylentetrahydrofolate reductase (MTHFR) C677T polymorphism diagnosed by molecular genetic analysis was the only explanation for this toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The therapeutic efficacy of BAL9141 (formerly Ro 63-9141), a novel cephalosporin with broad in vitro activity that also has activity against methicillin-resistant Staphylococcus aureus (MRSA), was investigated in rats with experimental endocarditis. The test organisms were homogeneously methicillin-resistant S. aureus strain COL transformed with the penicillinase-encoding plasmid pI524 (COL Bla+) and homogeneously methicillin-resistant, penicillinase-producing isolate P8-Hom, selected by serial exposure of parent strain P8 to methicillin. The MICs of BAL9141 for these organisms (2 mg/liter) were low, and BAL9141was bactericidal in time-kill curve studies after 24 h of exposure to either two, four, or eight times the MIC. Rats with experimental endocarditis were treated in a three-arm study with a continuous infusion of BAL5788 (formerly Ro 65-5788), a carbamate prodrug of BAL9141, or with amoxicillin-clavulanate or vancomycin. The rats were administered BAL9141 to obtain steady-state target levels of 20, 10, and 5 mg of per liter or were administered either 1.2 g of amoxicillin-clavulanate (ratio 5:1) every 6 h or 1 g of vancomycin every 12 h at changing flow rates to simulate the pharmacokinetics produced in humans by intermittent intravenous treatment. Treatment was started 12 h after bacterial challenge and lasted for 3 days. BAL9141 was successful in the treatment of experimental endocarditis due to either MRSA isolate COL Bla+ or MRSA isolate P8-Hom at the three targeted steady-state concentrations and sterilized >90% of cardiac vegetations (P < 0.005 versus controls; P < 0.05 versus amoxicillin-clavulanate and vancomycin treatment groups). These promising in vivo results with BAL9141 correlated with the high affinity of the drug for PBP 2a and its stability to penicillinase hydrolysis observed in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two soluble exopeptidases were identified in promastigotes of Leishmania major, using an iodinated model tetrapeptide (LIAY) as substrate. Similar activities were also detected in L. major amastigotes and in different species of Leishmania promastigotes. A carboxy- and an aminopeptidase activity were resolved and isolated by anion exchange and gel permeation chromatographies. A single polypeptide of 62 kDa co-purified with the aminopeptidase activity. Optimum pH was neutral for the carboxypeptidase and neutral to alkaline for the aminopeptidase. Both activities were able to hydrolyse a dipeptide substrate (YL), and were inhibited by 20 microM bestatin and 200 microM 1,10-phenanthroline, but not by leupeptin, iodoacetamide and a range of other inhibitors. These results strongly suggest that both enzymes are metalloexopeptidases and thus represent a novel class of soluble peptidases in Leishmania.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Studies were performed in normal subjects and in rats to assess the effect of angiotensin converting enzyme (ACE) inhibition on the kallikrein-kinin system. As ACE is identical to kininase II, one of the enzymes physiologically involved in bradykinin degradation, bradykinin may be expected to accumulate during ACE inhibition. 2. A competitive antagonist of bradykinin was used to explore in unanaesthetized rats the contribution of circulating bradykinin to blood pressure control under ACE inhibition. 3. No evidence was found for a role of this vasodilating peptide in the blood pressure lowering effect of acute ACE inhibition. 4. The plasma activity of carboxypeptidase N (= kininase I), another pathway of bradykinin degradation, remained intact during a 1 week course of treatment with an ACE inhibitor in normal subjects. This therefore indicates that bradykinin formed during ACE inhibition can still be metabolized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proneuropeptide Y (ProNPY) undergoes cleavage at a single dibasic site Lys38-Arg39 resulting in the formation of 1-39 amino acid NPY which is further processed successively by carboxypeptidase-like and peptidylglycine alpha-amidating monooxygenase enzymes. To investigate whether prohormone convertases are involved in ProNPY processing, a vaccinia virus derived expression system was used to coexpress recombinant ProNPY with each of the prohormone convertases PC1/3, PC2, furin, and PACE4 in Neuro2A and NIH 3T3 cell lines as regulated neuroendocrine and constitutive prototype cell lines, respectively. The analysis of processed products shows that only PC1/3 generates NPY in NIH 3T3 cells while both PC1/3 and PC2 are able to generate NPY in Neuro2A cells. The convertases furin and PACE4 are unable to process ProNPY in either cell line. Moreover, comparative in vitro cleavage of recombinant NPY precursor by the enzymes PC1/3, PC2 and furin shows that only PC1/3 and PC2 are involved in specific cleavage of the dibasic site. Kinetic studies demonstrate that PC1/3 cleaves ProNPY more efficiently than PC2. The main difference between the cleavage efficiency is observed in the Vmax values whereas no major difference is observed in Km values. In addition the cleavage by PC1/3 and PC2 of two peptides reproducing the dibasic cleavage site with different amino acid sequence lengths namely (20-49)-ProNPY and (28-43)-ProNPY was studied. These shortened ProNPY substrates, when recognized by the enzymes, are more efficiently cleaved than ProNPY itself. The shortest peptide is not cleaved by PC2 while it is by PC1/3. On the basis of these observations it is proposed, first, that the constitutive secreted NPY does not result from the cleavage carried out by ubiquitously expressed enzymes furin and PACE4; second, that PC1/3 and PC2 are not equipotent in the cleavage of ProNPY; and third, substrate peptide length might discriminate PC1/3 and PC2 processing activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro and in vivo activity of amoxicillin and penicillin G alone or combined with a penicillinase inhibitor (clavulanate) were tested against five isogenic pairs of methicillin-resistant Staphylococcus aureus (MRSA) producing or not producing penicillinase. Loss of the penicillinase plasmid caused an eight times or greater reduction in the MICs of amoxicillin and penicillin G (from greater than or equal to 64 to 8 micrograms/ml), but not of the penicillinase-resistant drugs methicillin and cloxacillin (greater than or equal to 64 micrograms/ml). This difference in antibacterial effectiveness correlated with a more than 10 times greater penicillin-binding protein 2a affinity of amoxicillin and penicillin G than of methicillin and a greater than or equal to 90% successful amoxicillin treatment of experimental endocarditis due to penicillinase-negative MRSA compared with cloxacillin, which was totally ineffective (P less than .001). Amoxicillin was also effective against penicillinase-producing parent MRSA, provided it was combined with clavulanate. Penicillinase-sensitive beta-lactam antibiotics plus penicillinase inhibitors might offer a rational alternative treatment for MRSA infections.