959 resultados para CAL BP
Resumo:
A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the (super 14) C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).
Resumo:
New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration data sets extend an additional 2000 yr, from 0-26 cal kyr BP (Before Present, 0 cal. BP = AD 1950), and provide much higher resolution, greater precision, and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically-dated tree-ring samples, converted with a box diffusion model to marine mixed-layer ages, cover the period from 0-10.5 call kyr BR Beyond 10.5 cal kyr BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific C-14 reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 cal kyr BR A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the C-14 age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring data sets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al. (this issue).
Resumo:
A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace ImCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than ImCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to ImCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the C-14 age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine 04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).
Resumo:
The last glacial millennial climatic events (i.e. Dansgaard-Oeschger and Heinrich events) constitute outstanding case studies of coupled atmosphere-ocean-cryosphere interactions. Here, we investigate the evolution of sea-surface and subsurface conditions, in terms of temperature, salinity and sea ice cover, at very high-resolution (mean resolution between 55 and 155 years depending on proxies) during the 35-41 ka cal BP interval covering three Dansgaard-Oeschger cycles and including Heinrich event 4, in a new unpublished marine record, i.e. the MD99-2285 core (62.69°N; -3.57s°E). We use a large panel of complementary tools, which notably includes dinocyst-derived sea-ice cover duration quantifications. The high temporal resolution and multiproxy approach of this work allows us to identify the sequence of processes and to assess ocean-cryosphere interactions occurring during these periodic ice-sheet collapse events. Our results evidence a paradoxical hydrological scheme where (i) Greenland interstadials are marked by a homogeneous and cold upper water column, with intensive winter sea ice formation and summer sea ice melting, and (ii) Greenland and Heinrich stadials are characterized by a very warm and low saline surface layer with iceberg calving and reduced sea ice formation, separated by a strong halocline from a less warm and saltier subsurface layer. Our work also suggests that this stadial surface/subsurface warming started before massive iceberg release, in relation with warm Atlantic water advection. These findings thus support the theory that upper ocean warming might have triggered European ice-sheet destabilization. Besides, previous paleoceanographic studies conducted along the Atlantic inflow pathways close to the edge of European ice-sheets suggest that such a feature might have occurred in this whole area. Nonetheless, additional high resolution paleoreconstructions are required to confirm such a regional scheme.
Resumo:
High-precision analysis using accelerator mass spectrometry (AMS) was performed upon known-age Holocene and modern, pre-bomb coral samples to generate a marine reservoir age correction value (ΔR) for the Houtman-Abrolhos Archipelago (28.7°S, 113.8°E) off the Western Australian coast. The mean ΔR value calculated for the Abrolhos Islands, 54 ± 30 yr (1σ) agrees well with regional ΔR values for Leeuwin Current source waters (N-NW Australia-Java) of 60 ± 38. The Abrolhos Islands show little variation with ΔR values of the northwestern and north Australian coast, underlining the dominance of the more equilibrated western Pacific-derived waters of the Leeuwin Current over local upwelling. The Abrolhos Islands ΔR values have remained stable over the last 2896 yr cal BP, being also attributed to the Leeuwin Current and the El Niño Southern Oscillation (ENSO) signal during this period. Expected future trends will be a strengthening of the teleconnection of the Abrolhos Islands to the climatic patterns of the equatorial Pacific via enhanced ENSO and global warming activity strengthening the Leeuwin Current. The possible effect upon the trend of future ΔR values may be to maintain similar values and an increase in stability. However, warming trends of global climate change may cause increasing dissimilarity of ΔR values due to the effects of increasing heat stress upon lower-latitude coral communities.
Resumo:
A gray, fine-grained arkosic sandstone tablet bearing an inscription in ancient Hebrew from the First Temple Period contains a rich assemblage of particles accumulated in the covering patina. Two types of patina cover the tablet: a thin layer of black to orange iron-oxide-rich layer, a product of micro-biogenic processes, and a light beige patina that contains feldspars, carbonate, iron oxide, subangular quartz grains, carbon ash particles and gold globules (1 to 4 microns [1 micron = 0.001 millimeter] in diameter). The patina covers the rock surface as well as the engraved lettering grooves and blankets and thus post-dates the incised inscription as well as a crack that runs across the stone and several of the engraved letters. Radiocarbon analyses of the carbon particles in the patina yield a calibrated radiocarbon age of 2340 to 2150 Cal BP. The presence of microcolonial fungi and associated pitting in the patina indicates slow growth over many years. The occurrence of pure gold globules and carbon ash particles is evidence of a thermal event in close proximity to the tablet (above 1000 degrees Celsius). This study supports the antiquity of the patina, which in turn, strengthens the contention that the inscription is authentic.
Resumo:
Hunt, C. Elrishi, H. Gilbertson, D. Grattan, J. McLaren, S. Pyatt, B. Rushworth, G. Barker, G. Early-Holocene environments in the Wadi Faynan, Jordan. The Holocene. 2004. 14,6 pp 921-930
Resumo:
Grattan, J.P., Gilbertson, D.D., Hunt, C.O. (2007). The local and global dimensions of metaliferrous air pollution derived from a reconstruction of an 8 thousand year record of copper smelting and mining at a desert-mountain frontier in southern Jordan. Journal of Archaeological Science 34, 83-110
Resumo:
First paragraph: In 1993, a peat-cutter, Bruce Field, working on the blanket peat bank he rented from the Sutherland Estate by Loch Farlary, above Golspie in Sutherland (fig 1), reported to Scottish Natural Heritage and Historic Scotland several pieces of pine wood bearing axe marks. Their depth in the peat suggested the cut marks to be prehistoric. This paper summarizes the work undertaken to understand the age and archaeological significance of this find (see also Tipping et al 2001 in press). The pine trees were initially thought to be part of a population that flourished briefly across northern Scotland in the middle of the Holocene period from c 4800 cal BP (Huntley, Daniell & Allen 1997). The subsequent collapse across northernmost Scotland of this population, the pine decline, at around 4200-4000 cal BP is unexplained: climate change has been widely assumed (Dubois & Ferguson 1985; Bridge, Haggart & Lowe 1990; Gear & Huntley 1991) but anthropogenic activity has not been disproved (Birks 1975; Bennett 1995). It was hypothesized that the Farlary find would allow for the first time the direct link between human woodland clearance and the Early Bronze Age pine decline.
Resumo:
This paper presents a new review of our knowledge of the ancient forest beetle fauna from Holocene archaeological and palaeoecological sites in Great Britain and Ireland. It examines the colonisation, dispersal and decline of beetle species, highlighting the scale and nature of human activities in the shaping of the landscape of the British Isles. In particular, the paper discusses effects upon the insect fauna, and examines in detail the fossil record from the Humberhead Levels, eastern England. It discusses the local extirpation of up to 40 species in Britain and 15 species in Ireland. An evaluation of the timing of extirpations is made, suggesting that many species in Britain disappear from the fossil record between c. 3000 cal BC and 1000 cal BC (c. 5000-3000 cal BP), although some taxa may well have survived until considerably later. In Ireland, there are two distinct trends, with a group of species which seem to be absent after c. 2000 cal BC (c. 4000 cal BP) and a further group which survives until at least as late as the medieval period. The final clearance of the Irish landscape over the last few hundred years was so dramatic, however, that some species which are not especially unusual in a British context were decimated. Reasons behind the extirpation of taxa are examined in detail, and include a combination of forest clearance and human activities, isolation of populations, lack of temporal continuity of habitats, edaphic and competition factors affecting distribution of host trees (particularly pine), lack of forest fires and a decline in open forest systems. The role of climate change in extirpations is also evaluated. Consideration is given to the significance of these specialised ancient forest inhabitants in Ireland in the absence of an early Holocene land-bridge which suggests that colonisation was aided by other mechanisms, such as human activities and wood-rafting. Finally, the paper discusses the Continental origins of the British and Irish fauna and its hosts and the role played by European glacial refugia.
Resumo:
Fossil pollen, stomata and charcoal were examined from a lake sedimentary sequence in the Glen Affric National Nature Reserve, one of the largest areas of remnant native pine woodland in Scotland, in order to assess ecosystem dynamics over the last 11 000 years. Results reveal that pinewood communities have been continuously present in East Glen Affric for the last 8300 years. Pinus sylvestris fi rst arrived in the area around 9900 cal. BP, but occurred in only low abundance for the subsequent 1600 years. Pine populations expanded around 8300 cal. BP and remained in relatively constant abundance throughout the remainder of the Holocene. There is no evidence of a hypothesized regional mid-Holocene ‘ pine decline ’ at the site. Charcoal results reveal that pinewood communities in East Glen Affric do not appear to have been dependent on fire for either their establishment or their maintenance as has previously been suggested.
Resumo:
The problem of insufficient age-control limits the utilisation of the 8.2 ka BP event for modelling freshwater forcing in climate change studies. High-resolution radiocarbon dates, magnetic susceptibility and lithostratigraphic evidence from a lake sediment core from Nedre Hervavatnet located at Sygnefjell in western Norway provide a record of the early Holocene. We use the method of radiocarbon wiggle-match dating of the lake sediments using the non-linear relationship between the C-14 calibration curve and the consecutive accumulation order of the sample series in order to build a high-resolution age-model. The timing and duration of Holocene environmental changes is estimated using 38 AMS radiocarbon dates on terrestrial macrofossils, insects and chironomids covering the time period from 9750 to 1180 cal BP. Chironomids, Salix and Betula leaves produce the most consistent results. Sedimentological and physical properties of the core suggest that three meltwater events with high sedimentation rates are superimposed on a long-term trend with glacier retreat between 9750 and 8000 cal BP. The lake sediment sequence of Nedre Hervavatnet demonstrates the following: only a reliable high-resolution geochronology based on carefully selected terrestrial macrofossils allows the reconstruction of a more refined and complex environmental change history before and during the 8.2 ka event. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Published contemporary dinoflagellate distributional data from the NE Pacific margin and estuarine environments (n = 136) were re-analyzed using Canonical Correspondence Analysis (CCA) and partial Canonical Correspondence Analysis (pCCA). These analyses illustrated the dominant controls of winter temperature and productivity on the distribution of dinoflagellate cysts in this region. Dinoflagellate cyst-based predictive models for winter temperature and productivity were developed from the contemporary distributional data using the modern analogue technique and applied to subfossil data from two mid to late Holocene (~5500 calendar years before present–present) cores; TUL99B03 and TUL99B11, collected from Effingham Inlet, a 15 km long anoxic fjord located on the southwest coast of Vancouver Island that directly opens to the Pacific Ocean through Barkley Sound. Sedimentation within these basins largely comprises annually deposited laminated couplets, each made up of a winter deposited terrigenous layer and spring to fall deposited diatomaceous layer. The Effingham Inlet dinoflagellate cyst record provides evidence of a mid-Holocene gradual decline in winter SST, ending with the initiation of neoglacial advances in the region by ~3500 cal BP. A reconstructed Late Holocene increase in winter SST was initiated by a weakening of the California Current, which would have resulted in a warmer central gyre and more El Niño-like conditions.
Resumo:
Testate amoebae have been used widely as a proxy of hydrological change in ombrotrophic peatlands, although their response to abiotic controls in other types of mire and fenland palaeo-environments is less well understood. This paper examines the response of testate amoebae to hydroseral and other environmental changes at Mer Bleue Bog, Ontario, Canada, a large ombrotrophic peatland, which evolved from a brackish-water embayment in the early Holocene. Sediments, plant macrofossils and diatoms examined from a 5.99 m core collected from the dome of the bog record six stages of development: i) a quiet, brackish-water riverine phase (prior to ca. 8500 cal BP); ii) a shallow lake (ca. 8500–8200 cal BP); iii) fen (8200–7600 cal BP); iv) transitional mire (7600–6900 cal BP); v) pioneer raised mire (6900–4450 cal BP); and vi) ombrotrophic bog (4450 cal BP-present).
Testate amoebae, notably small (<25 µm diameter) specimens of Centropyxis aculeata type, first appear in low abundances in sediments ascribed to the lacustrine phase. Diatoms from the same horizons record a shallowing in water depth, a decline in salinity and the development of emergent macrophytic vegetation, which may have provided favourable conditions for testate amoeba colonization. The testate amoeba communities of the inferred fen phase are more diverse and include centropyxids, cyclopyxids, Arcellidae and Hyalospheniidae, although the assemblages show some differences to those recently reported in modern European fen environments. The Fen–Bog Transition (FBT) is also dominated by C. aculeata type. The change in testate amoeba communities around this key transition is apparent in the results of Detrended Correspondence Analysis (DCA), and appears to reflect a latent nutrient gradient and a secondary moisture gradient. DCA analyses of plant macrofossil remains around the FBT show a similar trend, although the sensitivity of the two proxies to the inferred environmental changes differs. Comparisons with other regional mid-Holocene peatland records confirm the important influence of reduced effective precipitation on the testate amoeba communities during the initiation and development of Sphagnum-dominated, raised bog communities.
Resumo:
A 40mcore from Loagan Bunut,Malaysian Borneo, yielded a high-resolution early Holocene (11.3e6.75 ka) sequence of marginal-marine deposits. Palynological analysis showed relatively stable fire-regulated lowland forest through this time, with the local development and regression of mangrove vegetation. A general trend of rising rainfall and thus strengthening North East monsoonal circulation linked to the migration of the mean position of the ICTZ was interrupted by what may be episodes of drier climate and weakening monsoonal activity at 9250-8890, 7900 and 7600-7545 cal. BP. Magnetic susceptibility peaks suggestmarked short-term ENSO-style activity superimposed upon this record. Repeated markers for openand disturbed habitats, plus occasional imported and probably-cultivated taxa, point towards human impact from the earliest Holocene on the wet tropical forest at Loagan Bunut.