179 resultados para C60
Resumo:
C-70 films deposited on highly oriented pyrolytic graphite (HOPG), Ag(110), Ag(111) and Pt(110) substrates have been investigated by scanning tunnelling microscopy. Interesting observations on novel molecular arrangements, as well as orientational disorder, are presented. Solid solutions of C-60 and C-70 show interesting packing of these molecules when deposited on HOPG.
Resumo:
Scanning tunneling microscopy of solid films of C-60 and C-70 clearly demonstrate the occurrence of photochemical polymerization of these fullerenes in the solid state. X-ray diffraction studies show that such a polymerization is accompanied by contraction of the unit-cell volume in the case of C-60 and expansion in the case of C-70. This is also evidenced from the STM images. These observations help to understand the differences in the amorphization behavior of C-60 and C-70 under pressure. Amorphization of C-60 under pressure is irreversible because it is accompanied by polymerization associated with a contraction of the unit cell volume. Monte Carlo simulations show how pressure-induced polymerization is favored in C-60 because of proper orientation as well as the required proximity of the molecules. Amorphization of C-70, on the other hand, is reversible because C-70 is less compressible and polymerization is not favored under pressure.
Resumo:
We report Raman studies on powder samples of the charge transfer complex (TTF)(x)C60Br8 at room temperature. The phonons show considerable softening with respect to the frequencies observed in the Raman spectrum of solid C60Br8. The strongest mode at 1464 cm(-1) in C60Br8 is red shifted to a doublet with peaks at 1414 and 1421 cm(-1), implying an average phonon softening Delta omega of -47 cm(-1). A comparison with the phonon softening of the corresponding A(g)(2) mode in alkali-doped C-60 (Delta omega similar to -36 cm(-1) for A(6)C(60), A = K, Rb or Cs) suggests that 8 electrons are transferred per C60Br8 molecule in the charge transfer complex. The mode at 503 cm(-1) in C60Br8 is shifted upwards, similar to that in A(6)C(60) compounds.
Resumo:
The stabilities of a number of small adducts as well as larger hydrides of C-60 and C-70 are reported using semiempirical MO methods. The data are shown to be consistent with the nature of bond alternation in the parent fullerenes and strain effects in the cage systems.
Resumo:
A UHV atomic force microscope with a conducting tip is used to measure the tip-sample conductance as a function of the applied force on well-ordered, monolayer islands of C60 on Cu(111). By imaging the sample before and after each force-distance experiment, it was possible to investigate the forces required for the removal of individual C60 molecules from the islands. The removal of C60 occurs near defects or edges of the C60 islands and requires an applied force of 5-20 nN, which corresponds to applied pressures of order 1 GPa. In addition, it was possible to investigate the strength of the C60 film on the molecular scale. It was found that the mechanical stiffness of a C60 molecule is of order 6 N/m and the islands appear to undergo a reversible yield process at an applied pressure of around 1.2 GPa.
Resumo:
Carbon nanotubes (CNTs) are promising for microsystems applications, yet few techniques effectively enable integration of CNTs with precise control of placement and alignment of the CNTs at sufficiently high densities necessary for compelling mechanical or electrical performance. This paper explores new methods for scalable integration of dense, horizontally aligned (HA) CNTs with patterned electrodes. Our technique involves the synthesis of vertically aligned (VA) CNTs directly on a conductive underlayer and subsequent mechanical transformation into HA-CNTs, thus making electrical contact between two electrodes. We compare elasto-capillary folding and mechanical rolling as methods for transforming VA-CNTs, which lead to distinctly different HA-CNT morphologies and potentially impact material and device properties. As an example application of this novel CNT morphology, we investigate fabrication of electrically addressable CNT-C60 hybrid thin films that we previously demonstrated as photodetectors. We synthesize these assemblies by crystallizing C60 from dispersion on HA-CNT thin-film scaffoldings. HA-CNTs fabricated by rolling result in relatively low packing density, so C 60 crystals embed inside the HA-CNT matrix during synthesis. On the other hand, C60 crystallization is restricted to near the surface of HA-CNT films made by the elasto-capillary process. © 2013 IEEE.
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z